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Abstract
We examine the non-ergodic properties of scaled Brownian motion (SBM), a
non-stationary stochastic process with a time dependent diffusivity of the form
D t t 1( ) a- . We compute the ergodicity breaking parameter EB in the entire
range of scaling exponents α, both analytically and via extensive computer
simulations of the stochastic Langevin equation. We demonstrate that in the
limit of long trajectory lengths T and short lag times Δ the EB parameter as
function of the scaling exponent α has no divergence at α = 1/2 and present
the asymptotes for EB in different limits. We generalize the analytical and
simulations results for the time averaged and ergodic properties of SBM in the
presence of ageing, that is, when the observation of the system starts only a
finite time span after its initiation. The approach developed here for the cal-
culation of the higher time averaged moments of the particle displacement can
be applied to derive the ergodic properties of other stochastic processes such
as fractional Brownian motion.

Keywords: scaled Brownian motion, anomalous diffusion, ageing

1. Introduction

The non-Brownian scaling of the mean squared displacement (MSD) of a diffusing particle of
the power-law form [1–4]
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x t K t2 12 ( ) ( )= a
a

is a hallmark of a wide range of anomalous diffusion processes [2, 4]. Equation (1) features
the anomalous diffusion coefficient Ka of physical dimension cm sec2 a and the anomalous
diffusion exponent α. Depending on its magnitude we distinguish subdiffusion (0 1a< < )
and superdiffusion ( 1a > ). Interest in anomalous diffusion processes was rekindled with the
advance of modern spectroscopic methods, in particular, advanced single particle tracking
methods [5]. Thus, subdiffusion was observed for the motion of biopolymers and submicron
tracer particles in living biological cells [6], in complex fluids [7], as well as in extensive
computer simulations of membranes [8] or structured systems [9], among others [3, 4, 10].
Superdiffusion of tracer particles was observed in living cells due to active motion [11].

Anomalous diffusion processes characterized by the MSD (1) may originate from a
variety of distinct physical mechanisms [1, 3, 4, 10, 12, 13]. These include a power-law
statistic of trapping times in the continuous time random walks (CTRWs) as well as related
random energy models [4, 10, 12–15] and CTRW variants with correlated jumps [16] or
superimposed environmental noise [17]. Other models include random processes driven by
Gaussian yet power-law correlated noise such as fractional Brownian motion (FBM) [18] or
the fractional Langevin equation [19]. Closely related to these models is the subdiffusive
motion on fractals such as critical percolation clusters [20]. Finally, among the popular
anomalous diffusion models we mention heterogeneous diffusion processes with given space
dependencies of the diffusion coefficient [21] as well as processes with explicitly time
dependent diffusion coefficients, in particular, the scaled Brownian motion (SBM) with
power-law form D t t 1( ) a- analysed in more detail herein [22–25]. Also combinations of
space and time dependent diffusivities were investigated [23, 26]. Space and/or time
dependent diffusivities were used to model experimental results for smaller tracer proteins in
living cells [27] and anomalous diffusion in biological tissues [28] including brain matter
[29, 30]. In particular, SBM was used to describe fluorescence recovery after photobleaching
in various settings [31] as well as anomalous diffusion in various biophysical contexts [32]. In
other branches of physics SBM was used to model turbulent flows observed by Richardson
[33] as early as 1952 by Batchelor [34]. Moreover, the diffusion of particles in granular gases
with relative speed dependent restitution coefficients follow SBM [35]. We note that in the
limiting case D t t1( ) ~ the resulting process is ultraslow with a logarithmic growth of the
MSD [36] known from processes such as Sinai diffusion [38], single file motion in ageing
environments [39], or granular gas diffusion with constant restitution coefficient [35].

In the following we study the ergodic properties of SBM in the Boltzmann–Khinchin
sense [37], finding that even long time averages of physical observables such as the MSD do
not converge to the corresponding ensemble average [4, 12, 13, 40]. In particular we compute
the ergodicity breaking parameter EB—characterising the trajectory-to-trajectory amplitude
fluctuations of the time averaged MSD—in the entire range of the scaling exponents α, both
analytically and from extensive computer simulations. We generalize the results for the
ergodic properties of SBM in the presence of ageing, when we start to evaluate the time
average the MSD a finite time span after the initiation of the system.

The paper is organized as follows. In section 2 we summarize the observables computed
and provide a brief overview of the basic properties of SBM. In section 3 we describe the
theoretical concepts and numerical scheme employed in the paper. We present the main
results for the EB parameter of non-ageing and ageing SBM in detail in sections 3 and 4. In
section 5 we summarize our findings and discuss their possible applications and
generalizations.
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2. Observables and fundamental properties of SBM

We define SBM in terms of the stochastic process [4, 22, 24, 26, 43]

x t

t
D t t

d

d
2 , 2

( ) ( ) ( ) ( )z= ´

where t( )z is white Gaussian noise with zero mean and unit amplitude
t t t t1 2 1 2( ) ( ) ( )z z d= - . The time dependent diffusion coefficient is taken as

D t K t , 31( ) ( )a= a
a-

where we require the positivity of the scaling exponent, 0a > . SBM is inherently out of
thermal equilibrium in confining external potentials [25]. Let us briefly outline the basic
properties of the SBM process. The ensemble averaged MSD of SBM scales anomalously
with time in the form of equation (1).

Here and below we use the standard definition of the time averaged MSD [4, 12]

T
x t x t t

1
d , 4

T
2

0

2( ) [ ( ) ( )] ( )òd D =
- D

+ D -
-D

where Δ is the lag time, or the width of the window slid along the time series in taking the
time average (4). Moreover, T is the total length of the time series. We denote ensemble
averages by the angular brackets while time averages are indicated by the overline. Often, an
additional average of the form

N

1
5

i

N

i
2

1

2( ) ( ) ( )åd dD = D
=

is performed over N realizations of the process, to obtain smoother curves. From a
mathematical point of view, this trajectory average allows the calculation of the time averaged
MSD for processes, which are not self-averaging6 [4, 40]. Both quantities (4) and (5) are
important in the analysis of single particle trajectories measured in advanced tracking
experiments [12]. For SBM the mean time averaged MSD (5) grows as [25]

K T T
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2

1
. 62

1 1 1
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- D - - D

+ - D
a

a a a+ + +⎡⎣ ⎤⎦

In the limit T 1D  , the time averaged MSD scales linearly with the lag time,

K
T

2 . 72
1

( ) ( )d D ~
D

a a-

SBM is thus a weakly non-ergodic process in Bouchaud’s sense [44]: the ensemble and time
averaged MSDs are disparate even in the limit of long observation times T,

xlimT
2 2( ) ( )d D ¹ D¥ and thus violate the Boltzmann–Khinchin ergodic hypothesis,

while the entire phase space is accessible to any single particle. Moreover, the magnitude of
the time averaged MSD becomes a function of the trace length T. Analogous asymptotic
forms for the mean time averaged MSD (5) are found in subdiffusive CTRW processes
[40, 41] and heterogeneous diffusion processes [21], see also the extensive recent review [4].
Note that also much weaker forms of non-ergodic behaviour exist for Lévy processes [42].

Another distinct feature of weakly non-ergodic processes of the subdiffusive CTRW [40]
and heterogeneous diffusion type [21] is the fact that time averaged observables remain
random quantities even in the long time limit and thus exhibit a distinct scatter of amplitudes

6 That is, a sufficiently long time average is insufficient to represent the whole ensemble.
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between individual realizations for a given lag time. This irreproducibility due to the scatter of
individual traces 2 ( )d D around their mean is described by the ergodicity breaking parameter
[4, 40, 45, 46]

EB 1, 8

2 2 2
2

2
2

2
( )

( )
( ) ( )

( )

( )
( )

( ) ( )


d d

d
xD =

D - D

D
=

D
D

= D -

where 2 2( ) ( ) ( )x d dD = D D . Moreover, we introduced the abbreviations ( ) D and ( ) D
for the nominator and denominator of EB, respectively. This notation will be used below. For
Brownian motion in the limit T 0D  the EB parameter vanishes linearly with TD in the
form [4, 45]

T
EB

4

3
. 9BM ( ) ( )D =

D

In contrast to subdiffusive CTRW and heterogeneous diffusion processes, the EB parameter of
SBM vanishes in the limit T 0D  and in this sense the time averaged observable becomes
reproducible [24, 25, 43]. We demonstrate the small amplitude scatter of SBM in figure 1, for a
detailed discussion see below. We note that the scatter of the time averaged MSD of SBM
around the ergodic value 1x = becomes progressively asymmetric for smaller α values and in
later parts of the time averaged trajectories, see figure 6 of [4]. In the following we derive the
exact analytical results for the EB parameter of SBM and support these results with extensive

Figure 1. Time averaged MSD of SBM as function of the lag time Δ for several values
of the scaling exponents α and ageing times ta. The asymptotic behaviour of
equation (11) is shown by the black solid lines. Parameters: T 104= , ta = 0, 102, 105,
and N = 100 traces are shown.
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computer simulations. Moreover we extend the analytical and computational analysis of the EB
parameter to the case of the ageing SBM process when we start evaluating the time series x(t) at
the time t 0a > after the original initiation of the system at t = 0 [43].

The time averaged MSD of an ageing stochastic process is defined as [15]

T
x t x t t

1
d 10a

t

t T
2 2

a

a

( ) [ ( ) ( )] ( )òd D =
- D

+ D -
+ -D

and thus again involves the observation time T. The properties ageing SBM were considered
recently [43]. The mean time averaged MSD becomes
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The ratio of the aged versus the non-ageing time averaged MSD in the limit t T,aD  has
the asymptotic form [43]

t T t T t T1 . 12a
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2
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D
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This functional form is identical to that obtained for subdiffusive CTRWs [15] and
heterogeneous diffusion processes [47]. The factor z( )La quantifies the respective depression
and enhancement of the time averaged MSD for the cases of ageing sub- and
superdiffusive SBM.

Figure 1 shows the time averaged MSD 2 ( )d D of individual SBM traces for the case of
weak, intermediate, and strong ageing for different values of α. We observe that the spread of
individual 2 ( )d D changes only marginally with progressive ageing times ta. Also the changes
with the scaling exponent α are modest, compare figure 2. Note that the magnitude of the time
averaged MSD decreases with ta for ultraslow SBM at 0a = , stays independent of ta for
Brownian motion at 1a = , and increases with the ageing time for superdiffusive processes at

1a > . These trends are in agreement with the theoretical predictions of equation (11) shown
as the solid lines in figure 1.

3. Ergodicity breaking of non-ageing SBM

3.1. General expression for the ergodicity breaking parameter

Analytically, the derivation of the EB parameter for SBM involves the evaluation of the
fourth order moment of the time averaged MSD

T
t t x t x t

x t x t

1
d d

.

13

T T
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0
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2
1 1

2

2
2 2

2
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-D -D

We use the fundamental property of SBM that

x t x t x t tmin , , 141 2
2

1 2( )( ) ( ) { } ( )=

and the Wick–Isserlis theorem for the fourth order correlators [48]. We then obtain the
nominator  of the EB parameter of equation (8)
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Taking the averages by help of equation (14) we arrive at
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With the new variable t t2 1t¢ = - (assuming t t2 1> ) and by changing the order of
integration we find the expression

Figure 2. Distribution ( )f x of the relative amplitude 2 2( ) ( )d dD D of the time
averaged MSD traces for SBM processes with different scaling exponents α as
indicated in the panels. As expected, the spread grows and the distribution becomes
more leptokurtic at longer lag times Δ. For progressively larger values of the scaling
exponent α the spread of the time averaged MSD decreases but stays asymmetric with
a longer tail at larger 2d values. In particular, for 1a = and 2 the shape is almost
indistinguishable at 10D = , see the bottom right panel. The trace length is T 104=
and the number of traces used for averaging is 103.
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Now, the new variables x t1¢ = D and y t¢ = ¢ D are introduced. Substituting equation (1)
into equation (17) we obtain
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Splitting the double integral over the variable x′ into an integral over a square region and a
triangular region yields
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From the double integrals from the power-law functions in equation (18), via equation (14)
we compute the nominator as
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in terms of the variable
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. 21( )t =
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remaining in the last term of this expression can, in principle, be represented in terms of the
incomplete Beta-function. The denominator ( ) D of the EB parameter (8) is just the squared
time averaged MSD given by equation (6). We thus arrive at the expression
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Note that the double analytical integration of equation (9) in [24] via Wolfram Mathematica
yields a result, that is indistinguishable from equation (20), as demonstrated by the blue dots
in figure 3(B).
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3.2. Expansions and limiting cases

We here consider some limiting cases of the EB parameter based on expressions (20) and
(20). In the limit 1a = and for T 1D  the leading order expansion in terms of TD turns
into equation (9). As it should the SBM process reduces to the ergodic behaviour of standard
Brownian motion.

3.2.1. The case 0 < α < 1 2= . The general expression for the behaviour of the EB parameter
in the range 0 1 2a< < follows from equation (22) by help of the identity (equation
(1.2.2.1) in [49])

x x x
x x

p q

q

p q
x x x1 d

1

1 1
1 d , 24p q

p q
p q

1
1( ) ( ) ( ) ( )ò ò+ =

+
+ +

+
+ +

+
+

-

that can be checked by straight differentiation. Performing this sort of partial integration three
times we reduce the power of the integrand so that in the limit t  ¥ the integral becomes a
converging function. In the range 0 1 2a< < we the find exact expression

Figure 3. Ergodicity breaking parameter EB of non-ageing SBM. (A) Results of
numerical simulations are depicted by the data points. The analytical results based on
equations (20) and (23) are given by the solid coloured lines. Data points for different
lag times are shown in different colours. The values of EB for ultraslow SBM (31) at

0a = and at α= 1/2 given by equation (32) are shown as the bigger black bullets,
computed for 100D = , 101, and 102. The larger orange bullets denote the same limits
but without the additive constants to the leading functional dependencies with TD .
Parameters: the trace length is T 104= , the number of traces used for averaging at each
α value is N 103= . (B) Exact and approximate analytical results for EB. The red,
green, and blue curves are the exact evaluations of equation (20). The dashed curve in
the region 1 2a > corresponds to equation (30) and the dashed curves for
0 1 2a< < are the results of [24]. The magenta curves in the region
0 1 2a< < are according to the analytical expansion (27) for given Δ values. The
dark blue data points, coinciding with our exact result (20), follow from evaluating the
double integral in equation (9) of [24] with Mathematica.
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The remaining converging integral can be represented in the limit T 1D  via the Beta
function: setting the upper integration limit 1( )t -  ¥ we obtain

x x x B1 d 2, 1 2 . 26
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1 3( ) ( ) ( ) ( )ò a a¢ ¢ + ¢ = + -a a
¥

+ -

Then we arrive at the following scaling law for the EB parameter
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The scaling form of EB versus T( )D of equation (27) coincides with that proposed in [24],
and it is indeed valid for vanishing TD and scaling exponents not too close to 0a = and
α= 1/2, see below. We find in addition that in the region 0 1 2a< the EB parameter of
the SBM process becomes a sensitive function of the lag time Δ, as shown in figure 3(A),
both from our theoretical results and computer simulations. This means that no universal
rescaled variable TD exists, as is the case for standard Brownian motion.

The asymptote (27) agrees with the result (10) in [24] in the range 0 1 2a< < of the
scaling exponent and for infinitely large values τ. Equation (28) above provides an explicit
form for the prefactor. In figure 3(B) the approximate expansion (27) is shown as magenta
curve. At realistic values TD the asymptote (27) agrees neither with our exact expression
(20) nor with the simulation data. This observation demonstrates the exact expression (20)
needs to be used a forteriori. The main reason is the finite τ value used in the simulations: for
very small TD equation (27) describes the exact result (20) significantly better (not shown).
We note that away from the critical points at 0a = and α= 1/2, equation (27) returns zero
and infinity, respectively (magenta curves in figure 3(B)). At these points special care is
required when computing I1 in equation (25), as discussed below.

3.2.2. The case α > 1 2= . For values 1 2a > of the scaling exponent in the limit of small
TD the denominator (23) becomes 4 2( ) t t a . Note that here we need to include two

more iterations of the integral in the last term of equation (25) by using equation (24). Then
we arrive at a new integral term that is converging at t  ¥. Thus the nominator (20)—after
cancellation of the first three orders in the expansion in terms of large τ—yields to leading
order 16 3 2 12 2 1( ) [ ( )] t a t a -a- .

From the exact expression (20) by using the integration formula (24) four times, we find
the exact representation
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From this expression the leading term with the divergence at α= 1/2 is written explicitly and
the remaining integral is converging only then. Plugging this expression into equations (20)
and (23) and keeping terms of order 2 1t a- in the limit 1t  we recover the result of [24]
given by equation (30), again valid in the range 1 2a > . Note that the divergence in the
denominator of the last term in I1 in equation (29) is compensated by the proper expansion of
the remaining integral in I1 in the limit of large values of τ for 1 2a > , see below.

The EB parameter then scales as

T
lim EB

4

3 2 1
. 30

T 0

2
( ) ( )a

a
D ~

-
D

D 

This result coincides with expression (10) in [24] in the range 1 2a > . As mentioned
already, special care is needed near the critical point α= 1/2. Equation (30) implies that
SBM is an ergodic process, with the EB parameter scaling strictly linearly with TD as in
relation (9) for Brownian motion, however, with an α-dependent prefactor of the form

2 12 ( )a a - . In contrast to subdiffusive CTRW processes [4, 40] and heterogeneous
diffusion processes [21] the EB parameter for Brownian motion converges to zero and thus
for sufficiently long measurement times the result of time averaged observables become
reproducible.

3.2.3. The case α ¼ 0. Now let us focus on the critical points 0a = and α= 1/2 in detail.
At 0a  the EB parameter of the ultraslow SBM process [36] can be obtained from
equation (20). To this end we first expand result (20) for small α using the identity
x e xlog( )=a a . In the remaining integral I1 in equation (22) we first expand the integrand in

powers of small α and then integrate the expanded function in the limits td
T

0ò
-D

. The first

two orders of the expansion in α in the nominator of EB disappear. Dividing the leading
orders in 2a in the nominator and denominator of EB and expanding for short lag times

T 1D  afterwards to the leading order we find

T
lim EB

4 6 1

log 1
. 31

T 0
USBM

2

2

( )
( )

( [ ] )
( )

p
D ~

-

D +D 

This result was obtained from independent considerations for ultraslow SBM as equation (20)
in [36]. Note the logarithmic rather than the linear dependence of EB on TD in this case,
stemming from the ultraslow logarithmic scaling of the MSD and the time averaged MSD
with (lag) time.

3.2.4. The case α = 1/2. Similarly, to explore the limit 1 2a  we first expand the exact
result (20) for ( ) D in α around this point. In analogy to the case 0a = we expand the
integrand in I1 in terms of powers of 1 2( )a - and then perform the integration over t from 0
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to T - D. Dividing the expansion of the nominator (20) of EB, taken at7 α= 1/2 in the limit
T 0D  , by the leading order of the denominator (23) in the same limit—scaling as 4τ—we

get

T
Tlim EB

3
log 2 log 2 5 6 . 32

T 0
1 2 ( ) [ ( ) ( ) ] ( )D =

D
D + -a

D 
=

The same expression can be obtained by expanding equation (25) valid in the region
0 1 2a< < . Alternatively result (32) can be obtained from the exact expression (29) valid
for 1 2a > . In this case, however, due to a pole at α= 1/2 one more order in the power
expansion near α= 1/2 needs to be properly evaluated when expanding I1. Then, the
divergence in the denominator of the prefactor of the last term in equation (29) becomes
eliminated and the EB parameter stays continuous as 1 2a  .

Compared to the case 1a = of Brownian motion the result (32) for EB features a weak
logarithmic dependence on TD . As expected the values of EB according to equation (32)
are very close to the exact solution (20), as shown by the larger black bullets for α= 1/2 in
figure 3(A). Note that for finite T D values the additional constants following the leading
functional dependencies in equation (31) and equation (32) play a significant rôle, as seen in
figure 3(A). The agreement of these EB values with the exact predictions of equation (20) and
computer simulations is particularly good for smaller TD values, as expected based on the
large τ expansions used in the derivation of equations (31) and (32).

3.3. Computer simulations

We implement the same algorithms for the iterative computation of the particle displacement
x(t) as developed for the heterogeneous diffusion process [21] and the combined hetero-
geneous diffusion-SBM process [26]. We simulate the one-dimensional overdamped Lan-
gevin equation

x t

t
D t t

d

d
2 33

( ) ( ) ( ) ( )x= ´

driven by the Gaussian white noise t( )x of unit intensity and zero mean. At step i 1+ the
particle displacement is

x x D t C y y2 , 34i i i i i1 1[ ]( ) ( ) ( )- = + ´ -+ +

where the increments y yi i1( )-+ of the Wiener process represent a δ correlated Gaussian
noise with unit variance and zero mean. Unit time intervals separate consecutive iteration
steps. To avoid a possible particle trapping at the pole of D(t) we introduced the small
constant C 10 3= - in analogy to the procedure for heterogeneous diffusion processes [21].
The initial position of the particle is x x t 0 0.10 ( )= = = .

Our simulations results shown in figure 3(A) confirm the validity of the general analytical
expressions (20) and (23) making up the EB parameter in the whole range of the scaling
exponent α. We also find that the short lag time expansion (30) agrees well with the exact
solution and simulations at 1 2a (figure 3(B)). In the range 1 2a the EB parameter
for T 1D  is nearly insensitive to the lag time and grows with α in accord with
equation (30). In particular, the full analytical expression for EB (equations (20) and (23)) and
the results of the simulations show no divergence at α= 1/2, in contrast to the approximate
results of [24].

7 With regard to the higher order expansion taken below, this corresponds formally to an expansion of order
1 2 0( )a - .

J. Phys. A: Math. Theor. 48 (2015) 375002 H Safdari et al

11



Figure 3(A) also shows the approximate EB values (31) for ultraslow SBM as well as EB
at α= 1/2 from equation (32) indicated as larger points. These points are close to our
predictions for SBM at 0a  , in particular, for small TD values when the approximations
used in deriving the corresponding equations are better satisfied. As the ratio TD grows and
the scaling exponent converges to zero, α →0—indicating progressively slower diffusion—
the results of our simulations start to deviate from the exact analytical results (20) and (23), as
shown in figure 3. In this limit apparently better statistics are needed in the simulations.

In figure 4 we show that EB scales with the trace length T approximately as T1 2a for
0 1 2a< < and as T1 for 1 2a > ; compare to the results in figure 1 of [24].

4. Ergodicity breaking of ageing SBM

We consider the ergodic properties of ageing SBM, where ta denotes the time span in between
the initiation of the system and start of the measurement. The ergodicity breaking parameter is
defined through the ageing time averaged MSD (compare equations (10) and (11)) as

EB
,

,
. 35a

a a

a

a

a

2 2 2
2

2
2

( )
( )

( )

( )

( )
( )

( )


d d

d

t
t

D =
D - D

D
=

D
D

For the numerator we find in full analogy to the non-ageing situation

T
t t

x t x t x t

4
d d

. 36

a
t

T t

t

T t

2 1 2

2
1 1 2

2

a

a a

1

( ) ( )

( )
( )

( ) ( )

 ò òD =
- D

´ + D - + D

+ -D + -D

⎡⎣ ⎤⎦
Changing the variables as above for the non-ageing scenario, t t2 1t¢ = - , we switch the
limits of integration using t T ta1( )t t¢ = + - D - ¢ and then split the integrals over t¢ to
compute the pair correlators using the property (14). This yields the representation of the
nominator of EB in terms of one-point averages only

T

t x t x t

4

d d . 37

a

t

T t

2

0
1

2
1

2
1

2

a

a ( )( )

( )
( )

( )



ò òt t

D =
- D

´ ¢ + D - + ¢
¢tD + -D- ⎡⎣ ⎤⎦

We proceed by inserting the MSDs of equation (1) and arrive at

K

T
y x

x x x y x y

16
d d

1 2 1 . 38

a
t

T t y2 2 2

2 0

1 1

2 2

a

a

( )
( )

( ) ( ) ( ) ( ) ( )

 ò òD =
D

- D
¢ ¢

´ ¢ + - ¢ + ¢ + ¢ + ¢ + ¢

a
a

a a a a

+

D

D+ D- - ¢

⎡⎣ ⎤⎦
Changing the order of integration and splitting the integral over x′ we get in terms of the
variables Tt = D and

t
39a

a ( )t =
D
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that

K

T
x y x x x y

x y x y

x x x y x y

,
16

d d 1 2 1

d d

1 2 1 . 40

a

x

2 2 2

2

2

0

1
2

2

2

1

0

1

2 2

a

a

a

a a

( )
( )

( ) ( ) ( )

( ) ]

( ) ( ) ( ) ( ) ( )

 ò ò

ò ò

tD =
D

- D
¢ ¢ ¢ + - ¢ + ¢ + ¢

+ ¢ + ¢ + ¢ ¢

´ ¢ + - ¢ + ¢ + ¢ + ¢ + ¢

a
a

t

t t
a a a

a

t t

t t t t

a a a a

+ + -

+ -

+ - + - - ¢

⎡⎣

⎡⎣ ⎤⎦
Finally, taking the integrals in the nominator of EB for ageing SBM yields

K

T

x x x

,
16 1

2 1

1

2 1

3 1 1

2 2 1 1

3 1 1

2 2 1 1

2 2 1 1

2 2 1 1

2 1

1

2

1
d 1 .

41

a
a a

a a

a

a a a

2 2 2

2

2 1 2 1

2 2

2

2 2

2

2 2

2 2 1 1

2

1
1

a

a

( ) ( )

( ) ( )

( )

( )
( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )

( ) ( )
( )



ò

t
t t

a

t

a

a t t

a a

a t

a a
t

a a

t t
a a

t t t t

a

a

D =
D

- D

+ -

+
-

+

+

+
+ + -

+ +
+

+ +

+ +

+
+ +

+
+
+ +

-
+ + -

+

+
+

¢ ¢ ¢ +

a
a a a

a a

a

a a a

t

t t
a a

+ + +

+ +

+

+ + +

+ -
+

⎡
⎣
⎢⎢

⎤
⎦⎥

Here we again denote

I x x x, d 1 . 42a1

1
1

a

a

( ) ( ) ( ) ( )òt t = ¢ ¢ ¢ +
t

t t
a a

+ -
+

Figure 4. EB parameter for non-ageing SBM versus trace length T. The solid lines
represent the exact results according to equation (20). Parameters: 10D = and
N 103= .
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The denominator of EB follows from the time averaged MSD (11), namely [26, 43]

K

T
,

2

1
1

1 . 43

a a a a

a a

2
2 1

1 1

1 1
2)

( )

( )

( ) ( )
( )( )

( )

( )

 t d
a

t t t

t t t

D = D =
D

+ - D
+ - +

- + - +

a
a

a a

a a

+
+ +

+ +

⎛
⎝⎜

⎡⎣
⎤⎦

The final EB breaking parameter (35) for ageing SBM turns into expression (20) for the non-
ageing case, 0at = .

In the limit of strong ageing, Tat D  , the time averaged MSD scales as

K t2 44a a
2 1( ) ( )d aD ~ Da

a-

and the nominator of EB grows as

K, 16 3 45a a
2 2 2 2 2 2( )( ) ( ) t t a t tD ~ Da

a a- -

to leading order in large at values and long trajectories. Then, the ergodicity breaking
parameter follows the Brownian law (9). This limiting behaviour is supported by the
simulations of strongly ageing SBM shown in figure 5. Moreover, it is similar to that of
ageing ultraslow SBM [36]. Physically, in the limit of long ageing times at the diffusivity D(t)
changes only marginally on the time scale T t of the particle diffusion, so that the entire
process stays approximately ergodic.

In the opposite limit of weak ageing, Tat  , we observe that
K, 2a a

2 1 2( ) ( )d t t at tD ~ D +a
a a a- - , and the nominator of EB to leading order of short

at and long T values produces K, 16 3 2 12 2 2 2 2 1( ) ( [ ( )]) t t a t aD ~ D -a
a a- - .

Figure 5. EB parameter for ageing SBM. Results of simulations are shown by the
points and the analytical results (41) are represented by the solid lines of the
corresponding colour. Parameters: 10D = , T 104= , and N 103= .
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Consequently the EB parameter to leading order is independent of the ageing time at and
follows equation (30) as long as 1 2a > .

Figure 5 shows the simulations results based on the stochastic Langevin process of
ageing SBM. We find that in the limit of strong ageing, consistent with our theoretical results
the EB of ageing SBM indeed approaches the Brownian limit (9). For weak and intermediate
ageing the general EB expression (41) is in good agreement with the simulations results,
compare the data sets in figure 5. Finally figure 6 depicts the graph of EB versus the ageing
time explicitly, together with the theoretical results (41) and (43). We observe that EB
decreases with the ageing time and this reduction is particularly pronounced for strongly
subdiffusive SBM processes. The latter also feature some instabilities upon the numerical
solution of the stochastic equation for long ageing times.

5. Conclusions

We here studied in detail the ergodic properties of SBM with its power-law time dependent
diffusivity D t t 1( ) a- . In particular, we derived the higher order time averaged moments
and obtained the ergodicity breaking parameter of SBM, which quantifies the degree of
irreproducibility of time averaged observables of a stochastic process. For the highly non-
stationary, out-of-equilibrium SBM process we analysed the EB parameter with respect to the
scaling exponent α, the lag time Δ, and the trace length T. We revealed a non-monotonic
dependence EB( )a . In particular, we showed that there is no divergence at α= 1/2, in
contrast to the approximate results of [24]. We also obtained a peculiar dependence for the EB
dependence on the trace length T, T TEB 1 2( ) ~ a for 0 1 2a< < and T TEB 1( ) ~ for

1 2a > , in agreement with [24]. We also obtained analytical and numerical results for EB
for ageing SBM as function of the model parameters and the ageing time ta.

Our exact analytical results are fully supported by stochastic simulations. We find that
over the range 1 2a and for T 1D  the EB dependence on the lag time and trace
length involves the universal variable T1 t = D , as witnessed by equation (30). For
arbitrary lag times and trace lengths the general result for ageing and non-ageing SBM are,

Figure 6. EB parameter for ageing SBM versus ageing time ta. Analytical results (41)
and (43) for different α values are represented by the solid lines. Some instabilities in
the simulations are visible at long ageing times, in particular for small α. Parameters:

10D = , T 104= , and N 103= .
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however, more complex, see equations (20) and (41). These are the main results of the current
work. For strongly subdiffusive SBM in the range of exponents 0 1 2a< the ergodic
properties are, in contrast, strongly dependent on the lag time Δ. The correct limit of our
exact result (20) was obtained for the EB parameter of ultraslow SBM with 0a  and for
SBM with exponent α= 1/2. Although EB has some additional logarithmic scaling at this
point, it reveals no divergence as α= 1/2 is approached.

We are confident that the strategies for obtaining higher order time averaged moments
developed herein will be useful for the analysis of other anomalous diffusion processes, in
particular for the analysis of finite time corrections of EB for FBM [45] or for processes with
spatially and temporally random diffusivities [50, 51].
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