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Modern single particle tracking techniques and many large scale simulations produce
time series r(t) of the position of a tracer particle. Standardly these are evaluated in
terms of the time averaged mean squared displacement. For ergodic processes such as
Brownian motion, one can interpret the results of such an analysis in terms of the known
theories for the corresponding ensemble averaged mean squared displacement, if only
the measurement time is sufficiently long. In anomalous diffusion processes, that are
widely observed over many orders of magnitude, the equivalence between (long) time
and ensemble averages may be broken (weak ergodicity breaking). In such cases the time
averages may no longer be interpreted in terms of ensemble theories. Here we collect some
recent results on weakly non-ergodic systems with respect to the time averaged mean
squared displacement and the inherent irreproducibility of individual measurements. We
also address the phenomenon of ageing, the dependence of physical observables on the
time span between initial preparation of the system and the start of the measurement.

Keywords: Anomalous diffusion; ensemble average; time average; ageing; non-
stationarity.

1. Introduction

Following the three groundbreaking papers on the theory of Brownian motion1 by
Albert Einstein,2 Marian Smoluchowski,3 and Paul Langevin,4 in 1908 Jean Perrin
reported the first systematic single particle tracking results in his seminal paper on
diffusion. Perrin used microscopic diffusion measurements of small putty particles
to determine Avogadro’s number via the Einstein-Stokes-Smoluchowski relation.5

Due to the relatively short trajectories, Perrin used the ensemble information of
many measured, not completely identical particles in his analysis.5 Only six years
after Perrin’s first publication and exactly hundred years ago, in 1914 Ivar Nordlund
conceived an experimental setup, that allowed him to record long time traces of

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.

1560007-1

In
t. 

J.
 M

od
. P

hy
s.

 C
on

f.
 S

er
. 2

01
5.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 4

6.
80

.2
01

.6
6 

on
 1

2/
18

/1
8.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S2010194515600071


December 4, 2014 16:26 WSPC/CRC 9.75 x 6.5 1560007

R. Metzler

Fig. 1. Sample trajectories of sedimenting mercury droplets measured by Ivar Nordlund in 1914
with his moving film technique, time increases to the right.6 The jiggly motion of the droplets
superimposed onto the deterministic sedimentation shows the Brownian motion of the droplets.

small mercury droplets on a moving film. From the records he then evaluated single
particle trajectories in terms of time averages of the mean squared displacement.6

Figure 1 shows typical trajectories measured by Nordlund.6 His method was con-
tinuously refined in the following two decades, culminating in the measurements of
Eugen Kappler,7 whose result for Avogadro’s number is within 1% of the current
best known value.

Single particle tracking has become a routine tool in living biological cells as well
as complex fluids in vitro.8 Common tracer particles include fluorescently labelled
molecules such as messenger RNA in the cytoplasm of cells or protein channels in
their membranes. Without labels, submicron tracers such as endogenous granules
or internalised particles such as viruses or plastic spheres can be directly monitored
in microscopes.

Consider first a passive tracer particle in a simple liquid such as water. Single
particle tracking of this tracer will reproduce the laws of Brownian motion. The
ensemble averaged mean squared displacement (MSD)

〈r2(t)〉 =
∫

r2P (r, t)dr (1)

obtained as average of r2 over the probability density function P (r, t) will yield the
linear scaling 〈r2(t)〉 � K1t with time t, where K1 is the diffusion constant. The
proportionality factor depends on the spatial dimension. Single particle tracking
experiments produce the time series r(t) of the particle position. Typically, few but
long trajectories r(t) are measured and analysed in terms of the time averaged MSD

δ2(∆) =
1

T − ∆

∫ T−∆

0

[
r(t+ ∆) − r(t)

]2

dt. (2)

This moving average sums the particle displacements within the lag time ∆ over
the time series r(t) of length (measurement time) T . For normal Brownian motion,
the long time limit yields9

δ2(∆) � K1∆, (3)

and we find the equivalence 〈r2(∆)〉 = δ2(∆) of ensemble and time averaged MSDs.
This is a restatement of Boltzmann’s ergodic hypothesis: long time and ensemble
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averages of physical observables are equivalent. In the following we will also consider
the average over individual trajectories,

〈
δ2(∆)

〉
=

1
N

N∑
i=1

δ2i (∆) =
1

T − ∆

∫ T−∆

0

〈[
r(t+ ∆) − r(t)

]2
〉
dt. (4)

In many systems deviations from Brownian motion are observed. This anomalous
diffusion is typically of the power-law form10

〈r2(t)〉 � Kαt
α (5)

with the anomalous diffusion exponent α and the generalised diffusion coefficientKα

of physical dimension [Kα] = cm2/secα. We distinguish subdiffusion (0 < α < 1)
and superdiffusion (α > 1). Anomalous diffusion is often measured in crowded
media, in particular, in living biological cells.11–14

Anomalous diffusion loses the universality of Brownian motion, and the MSD
(5) is no longer sufficient to uniquely identify a stochastic process. Many different
stochastic processes give rise to anomalous diffusion, and they exhibit many different
features. The question we address here is the violation of ergodicity: we analyse
which processes give rise to the disparity 〈r2(∆)〉 �= δ2(∆) and related properties. As
we will see, several commonly used anomalous stochastic processes violate ergodicity
and effect the irreproducibility of single particle tracking measurements.

2. Fractional Brownian and Langevin Equation Motion

The well known Langevin equation in the overdamped limita

dx(t)
dt

=
√

2K1 × ξ(t) (6)

is driven by white Gaussian noise of zero mean and correlator 〈ξ(t)ξ(t′)〉 ∼ δ(t −
t′).4, 15 In contrast to the δ-correlation fractional Gaussian noise (fGn) has the
power-law correlation

〈ξ(t)ξ(t′)〉 ∼ αKα(α− 1)|t− t′|α−2, (7)

with exponent 0 < α < 2. FGn is known to characterise the tracer motion in
viscoelastic environments.16–21 Such correlated noise also governs the motion of
individual lipids in lipid membranes,22–24 and fGn occurs for the motion of a tracer
particle in a single file of colloidal particles with excluded volume interactions.25 In
the case 0 < α < 1 the noise-noise correlator has a negative sign, a situation often
termed antipersistent noise. In the case 1 < α < 2 we speak of persistence.

aFor simplicity, we will use the one-dimensional notation for the remainder of this chapter.

1560007-3

In
t. 

J.
 M

od
. P

hy
s.

 C
on

f.
 S

er
. 2

01
5.

36
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 4

6.
80

.2
01

.6
6 

on
 1

2/
18

/1
8.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 4, 2014 16:26 WSPC/CRC 9.75 x 6.5 1560007

R. Metzler

2.1. Fractional Brownian motion (FBM)

Fractional Brownian motion simply substitutes the white Gaussian noise in the
Langevin equation (6) with fGn (7).26, 27 From a physical point of view, fGn is to be
considered an external noise. The resulting ensemble average for the MSD is given
by Eq. (5). FBM is ergodic in the sense that the time averaged MSD for unconfined
motion becomes28

δ2(∆) ∼ 2Kα∆α (8)

in the limit of long T . We emphasise that the equality δ2(∆) = 〈x2(∆)〉 indeed
holds for a single trajectory in the long measurement time T limit,16 as expected
for an ergodic process. The approach to ergodicity occurs as a power-law, similar
to regular Brownian motion.28

In addition to the ergodic behaviour, individual trajectories of FBM are repro-
ducible. More precisely, the amplitude variation of the time averaged MSD δ2(∆)
from different realisations of length T around the mean 〈δ2(∆)〉 is Gaussian. At a
fixed lag time ∆, the width of this distribution decreases with increasing measure-
ment time T ,29 and sufficiently long individual trajectories are therefore in that
sense reproducible.

2.2. Fractional Langevin equation motion

When we require that the fGn is internal and should fulfil the Kubo generalised
fluctuation-dissipation theorem, the resulting particle motion in the overdamped
limit is described by the fractional Langevin equation (FLE)30

γ

∫ t

0

(t− t′)α−2 dx(t
′)

dt′
dt′ =

√
γkBT

α(α − 1)Kα
× ξ(t), (9)

for 1 < α < 2. Here kBT represents the thermal energy. In this formulation the
long-range correlations of the noise are matched by the memory integral over the
friction kernel. In terms of the fractional Caputo derivative31

d2−αx(t)
dt2−α

=
1

Γ(α− 1)

∫ t

0

(t− t′)α−2 dx(t
′)

dt′
dt′. (10)

Eq. (9) can be rewritten in the compact form

d2−αx(t)
dt2−α

=
1

Γ(α− 1)

√
kBT

γα(α − 1)Kα
× ξ(t), (11)

hence the name fractional Langevin equation.32 FLE motion is ergodic,

δ2(∆, T ) ∼ 〈x2(∆) � 2K2−α∆2−α. (12)

Due to the restriction 1 < α < 2, FLE motion is therefore subdiffusive. As for FBM,
the approach to ergodicity is algebraic.28 We note that FLE motion was also used
recently in models of active transport in living cells.33
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2.3. Transient non-ergodicity of FBM & FLE motion

The MSD for both FBM and FLE motion crosses over to a plateau in confinement,
for instance, in case of diffusion in an harmonic potential V (x) = kx2/2.34 In
the case of FBM, no temperature is defined, and the value of the plateau is a
function of the anomalous diffusion exponent α, 〈x2〉st = KαΓ(1 + α)/kα.35 The
associated time averaged MSD becomes 〈δ2stat〉 = 2〈x2〉st. Here the factor two
between the MSD and the time averaged MSD is due to the definition (2), which
involves twice the stationary value 〈x2〉st.36 In contrast to FBM, FLE motion fulfils
the fluctuation-dissipation relation, and the MSD relaxes to the unique plateau
value 〈x2〉th = kBT /k, while the time average converges to 〈δ2th〉 = 2〈x2〉th.36

While for the free FBM and FLE motion ergodic behaviour is found the crossover
to the stationary plateau turns out to be transiently non-ergodic. For both FBM and
FLE motion the relaxation of the ensemble averaged MSD is exponential. However,
for the time averaged MSD the approach is algebraic. For FBM we find36

δ2(∆) ∼ 2〈x2〉st − KαΓ(α+ 1)
k2

e−k∆ − 2α(α− 1)Kα

k2∆2−α
, (13)

and for FLE motion36

δ2(∆) ∼ 2〈x2〉th
(
1 − γ

k∆2−α

)
. (14)

This transient weak ergodicity breaking may lead to the false assumption that in
the analysis of data the process has not yet relaxed, while the corresponding MSD
〈x2(t)〉 already reached the plateau. This algebraic return to the ergodic behaviour
represented by the plateau reminds of the algebraic approach to ergodicity of the
free motion mentioned above. For single particle tracking experiments of submicron
tracer beads in a worm-like micellar solution, this behaviour is indeed shown in
Fig. 2. In this example the confinement is exerted by the optical tweezers used to
track the particle.19

2.4. Transient ageing of FBM & FLE motion

What happens when the system is initially prepared at time t = 0 and we start the
measurement at some later time ta > 0, the ageing time? We then define the time
averaged MSD as37, 38

δ2(∆) =
1

T − ∆

∫ ta+T−∆

ta

[
x(t+ ∆) − x(t)

]2

dt. (15)

A Brownian system naturally shows no dependence on ta. Even though the process
is asymptotically ergodic, however, we observe a transient dependence on ta for
processes driven by fGn. In general, for these processes it is found that the time
average MSD always contains the two additive terms,37〈

δ2(∆)
〉

= fst(∆) + fage(∆; ta, T ). (16)

The stationary term depends only on ∆, while the second, ageing term explicitly
depends on T and ta.
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Fig. 2. The time averaged MSD of submicron tracer beads in water (circles) and a viscoelastic
solution with 1% worm-like micelles (squares).19 The measurement is based on optical tweezers
tracking, so that the initial free motion of the tracer bead eventually becomes confined by the
tweezers potential. The time averaged MSD in water relaxes exponentially (full line), while in the
worm-like micellar solution we observe the algebraic relaxation of Eq. (14), shown by the dashed
line.

Free FLE motion has a stationary term featuring subdiffusion, fst � ∆2−α, and
the ageing term decays as fage � 1/T as long as the initial velocity distribution is
not thermal. In the limit ta � T , we find the ageing time dependence37

fage � t−2α
a . (17)

Under confinement FLE motion the term fst has a power-law approach to the
thermal plateau value, while again fage � 1/T . Interestingly, a different ta-scaling
is followed by the ageing term,37

fage � t2α−6
a . (18)

Confined FBM has fage � 1/T , however, the ageing term shows the exponential
decay37

fage ∼ x2
0 exp(−2kta). (19)

3. Subdiffusive Continuous Time Random Walks

As discussed in the previous section, FBM and FLE motion reach the ergodic
behaviour algebraically, similar to Brownian motion. For sufficiently long measure-
ments, individual trajectories become fully reproducible, and ergodicity is achieved
in every single trajectory. Here we introduce a process, for which ergodicity is bro-
ken asymptotically, and even for long measurement times T individual trajectories
never become reproducible. This process is the well-known Scher-Montroll-Weiss
continuous time random walk (CTRW):39–41 after each jump a random walker is
trapped (immobilised) for some waiting time t before it is allowed to jump again.
The waiting times t are independent random variables, that is, CTRWs are renewal
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processes. Waiting times are distributed identically with the waiting time probabil-
ity density function ψ(t). The form proposed originally by Scher and Montroll is
the power-law40

ψ(t) � τα

t1+α
, 0 < α < 1. (20)

With this distribution of waiting times, the process leads to the subdiffusive MSD
(5).40, 41 Due to the range of α, no characteristic waiting time 〈t〉 =

∫ ∞
0
tψ(t)dt → ∞

exists. This scale-free nature of the CTRW process no longer possesses a time scale
that allows one to distinguish a single or few jumps from many jumps. Typically,
in a given trajectory longer and longer individual waiting events occur which can
become of the order of the measurement time T , no matter how long we run the
measurement.

CTRW-type stochastic motion was observed in a wide range of systems, spanning
the motion of charge carriers in amorphous semiconductors,40 the dispersion of
tracer chemicals in subsurface aquifers,42 as well as the motion of tracer beads in
cross-linked semiflexible actin gels43 and of functionalised colloidal particles facing
complementarily functionalised surfaces.44 In living cells, the motion of lipid and
insulin granules in the cell cytoplasm17, 18 as well as of protein channels in the
plasma membrane45 follow the law (20).

The lack of a characteristic waiting time scale effects weak ergodicity break-
ing,46, 47 and the time averaged MSD becomes48, 49

〈
δ2(∆)

〉
∼ 2

Kα

Γ(1 + α)
∆

T 1−α
, ∆ 	 T, (21)

which shows a clear disparity with the ensemble averaged MSD (5). Despite the
anomalous nature of the process, the dependence of the time averaged MSD (21)
on the lag time ∆ is the same as for Brownian motion. Only the fact that the
amplitude decays as function of the measurement time T reflects the anomaly: while
the process evolves in time, increasingly longer individual waiting times occur and
cause a decay of the effective diffusivity � Kα/T

1−α. This behaviour also leads to
severe changes in the interaction of a particle with a reactive surface50, 51 and the
exploration of phase scape.52

Figure 3 shows the time averaged MSD for individual realisations of a subdiffu-
sive CTRW with α = 0.5. We notice a distinct scatter of the amplitudes between
the realisations. Moreover, while for most realisations the predicted linear slope〈
δ2(∆)

〉
� ∆ is observed, some of the time traces also show variations in the local

slope. Such amplitude scatter and local slope variations are a common feature in
many experiments, compare Refs. 17, 18, 45, 53. We can quantify the amplitude
scatter in terms of the dimensionless ratio ξ = δ2(∆)

/〈
δ2(∆)

〉
. The correspond-

ing distribution of relative amplitudes, φα(ξ) in the case of the subdiffusive CTRW
becomes a one-sided Lévy stable distribution.9, 48 This distribution for the limit
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Fig. 3. (Color online) Individual trajectories of a scale-free, subdiffusive CTRW with α = 0.5
exhibit the linear lag time dependence predicted by Eq. (21), with smaller local variations of the
slope. In addition, there is a clear scatter of the amplitudes between individual trajectories. These
features reflect the influence of individual long waiting time events.

T → ∞ demonstrates that no matter how long we average the motion of the par-
ticle, on the single trajectory level the time averaged MSD of this process always
remains a random quantity. In the special case α = 1/2 we find the Gaussian form

φ1/2(ξ) =
2
π

exp
(
−ξ

2

π

)
. (22)

Its maximum is at ξ = 0, reflecting completely stalled trajectories during the mea-
surement time T . Mobile trajectories with ξ > 0 are distributed as a half Gaussian.
When α increases towards the Brownian value α = 1, a peak emerges at ξ = 1. In
the Brownian case α = 1, ergodicity is restored, and φ1(ξ) = δ(ξ− 1) indicates that
for sufficiently long trajectories each realisation is fully reproducible. This behaviour
in terms of φ(ξ) is independent of an external potential,54, 55 due to the fact that the
ratio δ2(∆)

/〈
δ2(∆)

〉
is equal to the ratio n(T )/〈n(T )〉 of the number of jumps.38

Under confinement, for instance, by an harmonic external potential within a
finite domain with reflecting walls, the time averaged MSD of subdiffusive CTRWs
does not converge to the thermal plateau of the ensemble averaged MSD. Instead,
the time averaged MSD scales like55, 56

〈
δ2(∆)

〉
∼

(
〈x2〉B − 〈x〉2B

) 2 sin(πα)
(1 − α)πα

(
∆
T

)1−α

(23)

for ∆ 	 T and ∆ � (1/[Kαλ1])1/α. λ1 represents the lowest non-zero eigenvalue
of the Fokker-Planck operator in the confining potential, a measure for the time
scale when the particle engages with the confinement. The result (23) is universal
in so far as only the prefactor depends on the very form of the confining poten-
tial V (x). It involves the first and second moments of the Boltzmann distribution,
〈xj〉B =

∫
xj exp(−V (x)/[kBT ])dx/Z . The normalisation factor is the partition

Z =
∫

exp(−V (x)/[kBT ])dx. The analysis shows that in this scale free process
weak non-ergodicity remains present even in the limit of long measurements.
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3.1. Ageing behaviour of subdiffusive CTRW processes

CTRW processes with diverging time scale display ageing effects.57, 58 We already
saw ageing in the presence of the measurement time T in the time averaged MSD
(21). Ageing is due to the non-stationarity of the process. Thus, in subdiffusive
CTRWs the two-point correlation 〈x(t1)x(t2)〉 = f(t1/t2) is not a function of the
difference |t2− t1| of the two times but their ratio.55 This breakdown of stationarity
removes the time translation invariance of stationary processes and needs to be
taken into consideration in experiments, in which the start of the recording of the
trajectories occurs only at some (ageing) time ta > 0 after the original initialisation
of the system dynamics at t = 0.

For the regular MSD, for sufficiently long ageing times ta this leads to a crossover
from the scaling 〈x2(t)〉 � Kαt/t

1−α
a in the ageing-dominated regime t 	 ta to

the scaling (5) when the system evolves for much longer than the ageing time,
t� ta.38, 58 In the same situation the time averaged MSD (15) behaves much simpler
and features the multiplicative, universal correction factor38

Λα(ta/T ) =
(

1 +
ta
T

)α

−
(
ta
T

)α

. (24)

This factor solely depends on the ratio ta/T of ageing time ta and measurement
time T . Thus, apart from the amplitude, the scaling of the time averaged MSD (15)
as function of the lag time ∆ remains unaffected, an important piece of knowledge
when the exact age ta of the process is not precisely known.38

Ageing of a subdiffusive CTRW process gives rise to another remarkable feature.
Namely, the probability to observe at least one jump in an aged trajectory of length
T decreases algebraically with the ageing time ta.38 This property of the population
splitting of particles into a mobile and a fully immobile fraction has to be taken
into account when we want to deduce the anomalous diffusion constant from aged
trajectories.38 We note that also the first passage time behaviour of aged CTRW
processes exhibits an explicit dependence on the ageing time ta. In particular, inter-
esting crossovers between different scaling regimes occur, a fact that may be used
to deduce the age ta of a system from sufficiently long first passage data.59

More specifically, in an aged system the start of the measurement at ta typically
finds the system during one of the long waiting time events. It can be shown that
the occurrence of the first jump event in this case at the so-called forward waiting
time t1 is distributed according to,60–62

ψ1(t1|ta) =
sin(πα)

π

tαa
tα1 (ta + t1)

. (25)

At long waiting times ta � t1 the distribution of the forward waiting time is thus
broader than the regular waiting times t in ψ(t). In an aged CTRW all subsequent
jumps then follow the law ψ(t) again. Still, due to the macroscopic memory inherent
in CTRW processes,10 the influence of the ageing time persists until the evolution is
much longer than ta. In a modified CTRW model, in which every jump is dominated
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by the forward waiting time (25), the dynamics of the process is significantly slowed
down, giving rise to logarithmic time evolutions.63 These can be connected to single
file systems in which each particle separately becomes trapped with a scale-free
distribution of trapping times ψ(t).64

4. Correlated Continuous Time Random Walks

What if we do away with the renewal property of the previously discussed CTRW
process? One way to include correlations into the CTRW process is to consider a
model when successive waiting times are only separated by an incremental change.
Physically, this could reflect the motion in a quenched environment, in which locally
the motion is dominated by a given mobility with small variations. We could thus
imagine that the current waiting τi is composed of increments in the form65–67

τi =
∣∣∣ξ1 + ξ2 + . . .+ ξi−1

∣∣∣. (26)

If the ξi are distributed according to a Lévy stable law defined in terms of its Fourier
transform exp (−cγ |k|γ) with 0 < γ < 2, then the process leads to anomalous
diffusion governed by Eq. (5) with the anomalous diffusion exponent α = γ/(1+γ).
Its range is 0 < α < 2/3.65, 66 This model features a stretched exponential mode
relaxation P (k, t) � exp(−ct1/2) in the limit γ = 2, while for for 0 < γ < 2 a
power-law form P (k, t) � t−γ is obtained.67 There also exist alternative models to
correlated jump processes, see the discussion in Refs. 68 and 69 and the citations
therein.

The absolute value in the law (26) implies that the mean waiting time keeps
growing with T and diverges in the long time limit. The time averaged MSD67

〈
δ2(∆)

〉
� ∆
T 1−γ/(1+γ)

(27)

shows the weakly non-ergodic behaviour of the correlated CTRW process. It also
features ageing effects demonstrated by the temporal decay of the response of the
system to a periodic driving force.67 Individual trajectories show a pronounced
amplitude scatter.65

A similar trick can be used to correlate subsequent jump lengths. The MSD of
this process is then given exactly by65

〈x(t)2〉 � t(t+ 1)(2t+ 1)σ2

4
, (28)

for a Gaussian distribution of jump increments with variance σ2. This process thus
has the cubic long time scaling behaviour 〈x(t)2〉 � t3. The associated time averaged
MSD scales quadratically,65 〈

δ2(∆)
〉
� ∆2T (29)

for ∆ 	 T . Thus, also this process is weakly non-ergodic.65
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5. Heterogeneous Diffusion Processes

Let us now address a seemingly much simpler scenario, namely, a diffusion process
with a space-dependent diffusivity K(x). Such descriptions were used to model tur-
bulence70 or diffusion in heterogenous porous media.71, 72 In biological cells, local
variations of the diffusion coefficient were indeed recently mapped out.73 We con-
sider the Langevin equation74

dx(t)
dt

=
√

2K(x) × ξ(t), (30)

where the multiplicative noise ξ(t) is white and Gaussian with zero mean. Using
the Stratonovich interpretation this heterogeneous diffusion process (HDP) can be
shown to be weakly non-ergodic.

Consider the power-law form K(x) � K0|x|β for the diffusivity. The MSD is
then given by74

〈x2(t)〉 =
Γ(p+ 1/2)

π1/2

(
2
p

)2p

(K0t)p, (31)

with the exponent p = 2/(2 − β). For β < 0 this process is therefore subdiffusive,
while for 0 < β < 2 it is superdiffusive.74 The time averaged MSD in the limit
∆ 	 T exhibits the linear dependence74

〈
δ2(∆)

〉
=

Γ(p+ 1/2)
π1/2

(
2
p

)2p

Kp
0

∆
T 1−p

(32)

on the lag time, valid for both sub- and superdiffusive regimes. This implies the
exact connection 〈δ2(∆)〉 = (∆/T )1−p〈x2(∆)〉 with the ensemble averaged MSD.

Interestingly, despite the simplicity of the HDP process we again observe a
weakly non-ergodic behaviour. Similar results follow in the case of fast (exponential)
and slow (logarithmic) variations of the diffusivity K(x) with the particle position
x.75 We note that for the exponential case the square root scaling 〈δ2(∆)〉 � ∆1/2

was observed.75 In the context of imaged diffusion in cells the HDP process with
power-law x-dependence of K(x) was also generalised to two dimensions.76

6. Scaled Brownian Motion

What if we consider a time-dependent diffusion coefficient instead of the x-
dependence? As pointed out by Fuliński already,77 such experimentally observed
variations of the diffusivity78 may cause weakly non-ergodic behaviour in analogy
to the spatial dependence in the HDP process above. For a power-law time depen-
dence of the diffusivity this process is so-called scaled Brownian motion (SBM).79

Let us start with the Langevin equation

dx(t)
dt

=
√

2K (t) × ξ(t), (33)
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where ξ(t) is white Gaussian noise with zero mean. The diffusion coefficient is given
by

K (t) = αKαt
α−1, (34)

where 0 < α < 2. This process obviously leads to the MSD (5). Concurrently, the
time averaged MSD has the exact form80

〈
δ2(∆)

〉
=

2Kαt
1+α

(α+ 1)

[
1 − (∆/T )1+α − (1 − ∆/T )1+α

]
T − ∆

. (35)

For ∆ 	 T , the linear ∆-scaling is recovered,81

〈
δ2(∆)

〉
∼ 2Kα

∆
T 1−α

(36)

in both the sub- and superdiffusive cases. Thus, again we obtain a weakly non-
ergodic behaviour given by the disparity between ensemble and time averaged MSD.
However, different to the above weakly non-ergodic processes, SBM features fully
reproducible trajectories in the long time limit.80, 81 As discussed in Ref. 80 in
detail, the time dependent diffusivity K (t) may appear as a simple and natural
choice for the description of anomalous diffusion processes. However, K (t) actually
reflects a time-dependent temperature,77, 80 and thus leads to unphysical behaviour
in thermalised systems, in particular, when the data are from a confined system,
for instance, when the trajectories are measured by optical tweezers methods.80

7. Conclusions

Single particle tracking is increasingly becoming a standard tool to study the motion
of tracer particles in systems such as complex fluids or even living biological cells.
Concurrently, single particle traces are evaluated in large scale computer simula-
tions, for instance, to detect inhomogeneous motion in a population of simulated
particles. To evaluate the garnered time series one typically uses the time aver-
aged MSD. As we showed here, when the motion of the particle is anomalous, care
has to be taken to evaluate the results in a physically meaningful way. Due to the
occurrence of transient or asymptotic weak ergodicity breaking, one cannot sim-
ply compare the results for the time averages with the known behaviour of the
corresponding ensemble averages.

Apart from the processes discussed herein, non-ergodic behaviour also occurs in
other stochastic processes, including the ultraweakly non-ergodic Lévy walks82–84

where the disparity between ensemble and time averaged MSDs only amounts to a
constant factor. Diffusion on random, fractal percolation clusters was shown to be
ergodic.85 We also note that in some systems combinations of stochastic processes
have to be applied to capture the observed data.17, 18, 45, 86–88
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The diagnosis of a given data set for the exact underlying stochastic process11–14

requires the analysis of several complementary quantities. We mention the ampli-
tude scatter statistics,29 increment autocorrelations,9, 23 higher order moments,89, 90

mean maximal excursion methods,89 p-variation,91, 92 and the analysis of the dis-
tribution of the apparent diffusivity.93
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