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We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form
D(x) ∼ D0|x |α0 in the presence of annealed and quenched disorder of the environment, corresponding
to an effective variation of the exponent α in time and space. In the case of annealed disorder, for
which effectively α0 = α0(t), we show how the long time scaling of the ensemble mean squared
displacement (MSD) and the amplitude variation of individual realizations of the time averaged
MSD are affected by the disorder strength. For the case of quenched disorder, the long time behavior
becomes effectively Brownian after a number of jumps between the domains of a stratified medium. In
the latter situation, the averages are taken over both an ensemble of particles and different realizations
of the disorder. As physical observables, we analyze in detail the ensemble and time averaged MSDs,
the ergodicity breaking parameter, and higher order moments of the time averages. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4917077]

I. INTRODUCTION

The motion of individual molecules and submicron tracer
particles of different sizes in the cytoplasm of living biological
cells,1 in artificially crowded environments in vitro,2 in glass-
like systems,3 or in large scale in silico studies of membrane
structures4 was shown to follow the anomalous diffusion law

⟨x2(t)⟩ ≃ tβ, (1)

with the subdiffusive diffusion exponent mostly in the range
β = 0.4 . . . 0.9.5,6 A number of mathematical models of
different kinds were proposed to unveil the properties of anom-
alous diffusion phenomena embodied in the mean squared
displacement (MSD) in Eq. (1).7 In most of these models,
the properties of the stochastic process are homogeneous in
space. Especially for smaller tracers—which may cover longer
distances within the measurement time—or for techniques
allowing for full maps of local diffusivities, it turns out that
the diffusion coefficient becomes a function of the local tracer
position. For both eukaryotic8 and prokaryotic9 cells, such
local diffusivity maps indeed show significant variations. The
motion of tracer particles through space may also be impeded
by caging effects when the size of the particle is comparable
to the local mesh size in structured environments.10,11 In
such cases, the tracer diffusion becomes characterized by a
non-uniform, position-dependent diffusivity D(x). Similarly,
spatially varying transport characteristics are ubiquitous in
contaminant dispersion in subsurface water aquifers.12

In the field of stochastic dynamics, anomalous diffusion
in spatially random media, disordered energy landscapes,
weakly chaotic systems, and dynamic maps received consid-
erable attention.13–20 More specifically, anomalous diffusion
due to micro-domains was investigated,21 and the influence of

a)Electronic address: a.cherstvy@gmail.com
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environmental Gaussian noise on diffusive particle trajectories
in disordered systems was studied.22 Moreover, deviations
from normal diffusion due to quenched and annealed disorder
of the medium’s diffusivity received renewed interest.23,24

In such studies, one is mainly interested in the quantitative
behavior of particle MSD (1) as well as the ergodic prop-
erties of the system: is the information from time averages
of physical observables typically garnered as time series by
modern particle tracking assays equivalent to those of the
corresponding ensemble averages known from the theoretical
models? It turns out that a large variety of anomalous diffusion
processes involve weak ergodicity breaking,7,25–29 the disparity
between (long) time averages, and ensemble averages of phys-
ical observables such as the MSD, and that in those cases,
the Khintchine theorem needs to be substituted by generalized
versions.30,31

Here, we study the dynamics and the ergodic properties
of heterogeneous diffusion processes (HDPs) with position
dependent diffusivity D(x), in the presence of piece-wise deter-
ministic quenched and annealed disorder. More specifically,
we generalize the standard HDPs with power-law diffusivity

D(x) = D0|x |α0, (2)

for which the anomalous diffusion exponent of the MSD as-
sumes the form32–36

β =
2

2 − α0
. (3)

The physical dimension of the coefficient D0 in Eq. (2) is
[D0] = cm2−α0s−1. The exponent (3) designates subdiffusion
for α0 < 0 and superdiffusion for 0 < α0.32–36 The profiles of
the diffusivity for these cases are shown in Figs. 1(a) and
1(b). HDPs are weakly non-ergodic and ageing, that is, their
dynamics depends explicitly on the time gap between original
initiation of the system and start of the measurement.32–36 We

0021-9606/2015/142(14)/144105/11/$30.00 142, 144105-1 © 2015 AIP Publishing LLC
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FIG. 1. Particle diffusivity for heterogeneous diffusion processes: (a) and (b)
for, respectively, α0=−2 and α0= 1. Panels (c) and (d) show the diffusivity
of HDPs with quenched disorder for the same values of α0 and for the
parameters σ2= 0.25 and 2δx = 2 (see text for details). Slight variations of
the diffusivity in panels (c) and (d) indicate the external noise superimposed
in the process.

note that the ageing properties of HDPs35 embodied in the
ensemble and time averaged MSDs are in fact similar to those
of subdiffusive continuous time random walks37 and scaled
Brownian motion.38

In the following, we unravel how the additional disorder
in the system modifies the diffusive and ergodic properties of
HDPs. In particular, we examine in detail how the anomalous
laws of HDPs change when (i) the HDP scaling exponent α0
itself becomes a random variable and (ii) the domains of HDPs
are periodically distributed in space throughout the system.
The first scenario then corresponds to an annealed disorder,
while in the second situation, the disorder is quenched and
thus hard-wired into the structure of the diffusion medium.
Specifically, we compute the scaling laws for the ensemble
and time averaged MSDs as well as the amplitude spread
of individual realizations of the process. The analysis shows
that the annealed and quenched disorders introduce significant
differences in the behavior of HDPs with power-law diffusivity
(2). The article is structured as follows. In Sec. II, we define
the observables that we will analyze. Section III specifies the
model and its implementation in the simulations. In Sec. IV, we
then study HDPs with annealed disorder, followed by the sce-
nario with quenched disorder in Sec. V. Section VI concludes
this work.

II. OBSERVABLES

The central quantity in the study of stochastic processes is
the ensemble averaged MSD,

⟨x2(t)⟩ =
 ∞

−∞
x2P(x, t)dx, (4)

calculated as the spatial average of x2 over the probability
density function P(x, t) to find the particle at position x at

given time t.39 However, when individual time series x(t) of the
particle position are measured in experiments or simulations,
the typical quantity studied is the time averaged MSD,

δ2(∆) = 1
T − ∆

 T−∆

0


x(t + ∆) − x(t)2

dt . (5)

Here, ∆ is the lag time and T is the measurement time (length)
of the trajectory x(t).7,27,28 Often, also the additional average

δ2(∆)

=

1
N

N
i=1

δ2
i (∆) (6)

of the time averaged MSD over N individual trajectories is
taken.7,27,28 A process is called ergodic when we observe the
equality

⟨x2(∆)⟩ = lim
∆/T→0

δ2(∆). (7)

Examples for ergodic processes are Brownian motion7,27–29 as
well as anomalous diffusion processes with MSD (1) given by
random walks on fractals40 and processes driven by fractional
Gaussian noise.41–43 Once a process is non-stationary, equality
(7) is violated, the phenomenon of weak ergodicity break-
ing.7,25–29 A whole range of anomalous diffusion processes
with power-law MSD (1) belongs to this class and specifically
exhibits the linear lag time dependence

δ2(∆)

≃ ∆

T1−β (8)

of the time averaged MSD.7 As examples, we mention contin-
uous time random walk processes with scale free distributions
of waiting times,7,25–29,31 correlated continuous time random
walks,44 as well as diffusion processes with space32–36 and
time32,38,45,46 dependent diffusion coefficients and their combi-
nations.47 We also mention ultraslow diffusion processes with a
logarithmic form for ⟨x2(t)⟩ and linear lag time dependence (8)
of the time averaged MSD48 as well as the ultraweak ergodicity
breaking of superdiffusive Lévy walks.49

For finite measurement time, even ergodic processes
exhibit a statistical scatter of the amplitude of time averaged
observables. This irreproducibility for the case of the time aver-
aged MSD δ2(∆) can be quantified in terms of the distribution
φ(ξ) as function of the dimensionless variable7,26–28

ξ =
δ2
δ2

 . (9)

The variance of φ(ξ) is measured in terms of the ergodicity
breaking parameter7,26–28

EB(∆) = 

ξ2(∆)� − ⟨ξ(∆)⟩2 ≡



ξ2� − 1. (10)

For Brownian motion, the ergodicity breaking parameter at
∆/T → 0 has the form

EBBM(∆) = 4∆
3T

. (11)

Continuous time random walk processes with scale free wait-
ing time distribution have a finite value for ergodicity break-
ing EB parameter even in the limit ∆/T = 0,26 similar to
HDPs,33–36 while for scaled Brownian motion, the ergodicity
breaking parameter approaches zero in this limit.45–47
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For reference in what follows, we also mention that the
probability density function of HDPs has the exponential
form33

P(x, t) = |x |−2/α0

√
4πD0t

exp
(
− |x |2−α0

(2 − α0)2D0t

)
, (12)

which is a stretched (compressed) Gaussian for superdiffu-
sive (subdiffusive) HDPs with 0 < α0 < 2 (α0 < 0). Note that,
respectively, the shape (12) has a distinct cusp at the origin or
is bimodal with P(0, t) = 0.33

III. MODEL

We employ the same tested stochastic algorithm for the
Markovian HDPs as developed in Refs. 33–36, based on the
one-dimensional Langevin equation for the particle displace-
ment x(t) with the position dependent diffusivity D(x),

dx(t)
dt
=


2D(x) × ζ(t). (13)

The process is driven by the white Gaussian noise ζ(t) with
covariance ⟨ζ(t)ζ(t ′)⟩ = δ(t − t ′) and zero mean ⟨ζ(t)⟩ = 0. We
interpret Eq. (13) in the Stratonovich sense leading to the
following implicit mid-point iterative scheme: at step i + 1, the
particle position is

xi+1 − xi =


2D

( xi+1 + xi

2

)
× (yi+1 − yi), (14)

where the increments (yi+1 − yi) of the Wiener process repre-
sent a δ-correlated Gaussian noise with unit variance and zero
mean. Unit time intervals separate consecutive iteration steps.
Below, we simulate three values for the exponent α0, corre-
sponding to β = 1/2 (subdiffusive MSD), β = 0 (Brownian
motion), and β = 2 (superdiffusive MSD). For standard HDPs,
these cases were analyzed by us in Refs. 33–36. To avoid
divergencies of the particle motion, we regularize the diffu-
sivity at x = 0 by addition of a small constant, namely, D(x)
= D0(|x |α + Doff) where Doff = 10−3 and D0 = 10−2 for all re-
sults shown below. This choice does not affect the studied
scaling laws.33

We consider two versions of this additional disorder corre-
sponding to the annealed and quenched limits for the variation
of α. To examine the effect of additional noise due to the
environment, we implement a Gaussian distribution of the
scaling exponent of the diffusivity with the mean α0,

p(α) = 1
√

2πσ2
exp

(
− (α − α0)2

2σ2

)
. (15)

Generally, the distribution p(α) may be asymmetric, but we
restrict our discussion to symmetric forms. In the annealed
case of noisy HDPs, the properties of the environment change
rapidly in time compared to time scales of the particle motion.
Physically, such noise may be due to the imprecision of the
experimental setup or because of additional thermal agitation
in the system. The diffusing particle thus visits regions in space
with different local exponents α. In such a scheme, the particle
diffusivity at position x fluctuates in time, and the value of
the diffusivity will be different each time the particle revisits

the same position x. In this annealed case, large diffusivity
variations occur in the entire space.

In superdiffusive HDPs, distant particle excursions take
place due to the growth of D(x) away from the origin and the
associated acceleration of the motion, while for subdiffusive
HDPs the walker is increasingly trapped in the low-diffusivity
regions at larger values of the position |x |.33–36 With increasing
strength σ2 of the annealed noise given by distribution (15),
the excursions of the particles in both superdiffusive and sub-
diffusive cases become more erratic as time evolves. The time
interval δt during which the walker has a given HDP exponent
αi obviously affects the properties of noisy HDPs. These time
spans δt are here taken to be uniformly distributed. To simulate
annealed noisy HDPs, we use Eq. (15) with varying σ2. The
particle performs jumps with a given scaling exponent for
the time interval δt, after which a new exponent is chosen
from distribution (15), and so on. The particle displacement
xi during the time span (ti, ti + δt) with HDP exponent αi

is the starting condition for the next time interval. Shorter
δt intervals imply more erratic motion and stronger external
noise, as shown below.

For noisy HDPs in the presence of quenched disorder, the
profile of the particle diffusivity is hard-wired into the environ-
ment. We choose a static periodic arrangement of domains as
shown in Figs. 1(c) and 1(d). In each domain, the exponent α
is drawn from p(α), and the particle performs a regular HDP.
The midpoint of each domain is chosen as the origin in the
local HDP coordinate system, that is, locally the functional
shape of D(x) is centered and decays or increases with the local
scaling exponent α, as exemplified in Figs. 1(c) and 1(d). The
period δx for the stratification of the environment plays the role
of a switching mechanism affecting the system dynamics. At
the boundary of the domains, the diffusivity and its derivative
in general acquire jumps. Physically, the latter occurs in the
presence of some walls, cages, etc.

We simulate quenched noisy HDPs as follows. The entire
space is stratified into domains of width 2δx, and the local
HDP exponent is chosen from distribution (15). The length
δx is a vital parameter of quenched noisy HDPs. The particle
performs a HDP random walk in each space domain with
D(x,α) and it hops to a neighboring domain once the domain
boundary is reached. The centers of the domains are computed
from the particle position xi as

xc, i = 2(δx)int
 xi

2δx


+ sign[xi](δx), (16)

see Figs. 1(c) and 1(d). Here, int[x] denotes the integer part
of the argument, and an additional δx shift is used for conve-
nience. The starting position of the particle is near the center of
the first domain, at x(0) = 0.1 + xc,1. The subsequent position
xi+1 is evaluated from xi with the local exponent αi according
to Eq. (14), that is,

xi+1 − xi =


2D0

(���� xi+1 + xi

2
− xc, i

����
αi

+ Doff

)
(yi+1 − yi).

(17)

We vary the width of p(α) and the mean value of the scal-
ing exponent α0. Shorter periodicities δx are equivalent to
stronger external noise, as shown below. We note here that for
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subdiffusive HDPs, the centers of the domains xc, i correspond
to the regions of maximal diffusivity, while for superdiffusive
HDPs, these are the spots of the lowest diffusivity.33,34

IV. NOISY HDPS WITH ANNEALED DISORDER

A. Noisy Brownian motion, α0 = 0

For α0 = 0 and a small value σ2 of the additional noise, as
expected, we observe small discrepancies from the canonical
Brownian motion, as evidenced in Fig. 2(b). The behavior is
ergodic, and the ergodicity breaking parameter follows known
behavior (11) for Brownian motion, see Fig. 3. Most impor-
tantly, the ensemble averaged MSD equals the time averaged
MSD, apart from very short lag times at which the relaxation
from the initial value x(0) = x0 occurs (compare Ref. 35 for
more details). At longer lag times, the deteriorating statistics
of the δ2 traces give rise to the typical cone-like scatter.

As the noise strength σ2 increases, the variance of the α
distribution p(α) is increased, see, for instance, in the panel

for the noise strength σ = 0.5 in Fig. 2(b); a more pronounced
scatter of the δ2 traces emerges and, importantly, persists in the
limit ∆/T → 0. The occurrence of progressively more distant
particle excursions caused by superdiffusive traces with α > 0
gives rise to a larger spread of the amplitude scatter quantified
by the distribution φ(ξ). The value of


δ2


grows somewhat

faster than the ensemble MSD (1) due to these outliers, giving
rise to larger values of the ergodicity breaking parameter EB
(not shown). The time averaged MSD δ2(∆) scales linearly
with the lag time ∆, and, as it should, in the limit ∆ → T ,
the time averaged MSD settles back to the ensemble averaged
MSD, due to the pole in definition (5) of the time average.

For even larger noise strength σ2, the behavior of the
time averaged MSD and the ergodic properties are dominated
by extreme events: that is, by single or few trajectories in
the data set with the largest exponent(s) yielding extremely
distant particle excursions. With an increasing width of the α
distribution p(α), the spread of the time averaged MSD grows,
as well, as evidenced in Fig. 2(b). Similarly, for such large
values of the noise strength σ2, the value of the ergodicity

FIG. 2. Ensemble and time averaged MSDs ⟨x2(t)⟩ and

δ2(∆)


(thick blue curves) as well as individual time averaged MSDs δ2 (red curves) for annealed

noisy HDPs. Parameters: the values of α0 and its variance are indicated in the plots, the trace length is T = 104, and the number of sampled traces is N = 103.
The initial position is x0= x(t = 0)= 0.1. The top panels correspond to the noisy subdiffusive case, the middle panel represents noisy Brownian motion, and the
bottom panels are the case of superdiffusive noisy HDPs. The asymptotes (1) and (8) for the ensemble and time averaged MSDs of standard HDPs are shown as
the dashed curves. The Brownian asymptote ⟨x2(t)⟩= 2D0t is the dashed-dotted line.
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FIG. 3. Second, third, and fourth order moments of the amplitude scatter distribution φ(ξ) for annealed noisy HDPs, computed for the parameters of Fig. 2.
Large, medium, and small symbols correspond to lag times ∆= 1, 10, and 100, respectively. The dotted line in panel (a) at large σ2 is EB≈ N = 103, indicative of
the single trace dominance in this case, see text. The horizontal black dashed lines in panel (a) for small noise strength σ2 stand for EBBM(∆) given by Eq. (11).

breaking parameter becomes proportional to the number N
of recorded traces, witnessing the dominance of single traces,
each having the potential to be more extreme than the others,
compare Fig. 3(a). We refer the reader to Ref. 35, in which the
critical properties of HDPs and the effects of the number of
traces are analyzed in the limit α0 → 2.

For narrow distributions p(α), the spread φ(ξ) of indi-
vidual δ2 traces is symmetric at short lag times ∆, developing a
tail at longer lag times ∆. This behavior can be rationalized in
terms of a generalized Gamma distribution (see Ref. 33). The
general features of φ(ξ) are shown in Fig. 3 in terms of the
higher moments of this distribution. These are the skewness

S(ξ) = N−1 N
i=1(ξ − 1)3

�
N−1 N

i=1(ξ − 1)2�3/2 (18)

and the kurtosis

K(ξ) = N−1 N
i=1(ξ − 1)4

�
N−1 N

i=1(ξ − 1)2�2
, (19)

which complement the variance of φ(ξ) described by ergo-
dicity breaking parameter (10). In Fig. 3(a), we also observe
that for small noise strengthsσ2, the value EB(∆ = 1) for noisy
Brownian motion approaches EBBM(∆ = 1) given by Eq. (11),
as expected. The values of the ergodicity breaking parameter
grow with ∆, indicative of a bigger spread of δ2 of individual
traces (green points in Fig. 3(a)).

B. Subdiffusive noisy HDP, α0 = −2

For the subdiffusive case, the time evolution of the
ensemble and time averaged MSDs is illustrated in Fig. 2(a) for
different noise strengths σ2 of the α distribution. We observe
that for the subdiffusive value α0 = −2, the same magnitude
of the α variation causes a much weaker effect as compared
to the Brownian (α0 = 0) or superdiffusive (α0 = 1) situations.
The scatter of δ2 remains nearly insensitive to the lag time ∆,
similar to canonical HDPs.33,35 The scaling of the ensemble
averaged MSD also agrees with that for HDPs.33 It is reached
after less than a dozen of steps during which the relaxation
of the initial condition occurs, compare Refs. 33 and 35. The
scaling of the time averaged MSD


δ2


remains linear and

nearly unaffected by changes of σ2. The long time scaling of

the MSD is also weakly sensitive to σ2 in the range considered
here. Physically, for the subdiffusive case, the spread of αi

should be & α0 to give rise to fast particle excursions (outliers).
Thus, much larger σ2 values are required to disturb the spread
of δ2 for strongly subdiffusive noisy HDPs as compared to
superdiffusive noisy HDPs shown in Fig. 2(c). This is our first
important conclusion.

We rationalize the effects of the α spread further in terms
of the width and higher moments of the amplitude scatter distri-
bution φ(ξ). The results for α0 = 0, sub-, and superdiffusive
annealed noisy HDPs are shown in Fig. 3. We observe that
all moments are typically smaller for the subdiffusive case,
reflecting a less pronounced and asymmetric spread of δ2. The
skewness of Brownian motion (σ2 → 0) tends to small values,
as it should, while for sub- and superdiffusive noisy HDPs,
it attains finite values at σ2 → 0 (Fig. 3(b)). This is due to
the inherent asymmetry of the φ(ξ) scatter even at σ2 → 0: it
features a tail at large ξ values, a maximum at intermediate
ξ, and vanishes at ξ → 0.33 Both skewness S(ξ) and kurtosis
K(ξ) grow dramatically with σ2 for all values of α0, as demon-
strated in Figs. 3(b) and 3(c). We checked that for σ2 → 0,
the value of the ergodicity breaking parameter in the limit ∆/T
≪ 1 approaches that for standard HDPs,33 as expected, while
for a broad distribution of α values, the ergodicity breaking
parameter increases and eventually approaches the number of
traces N in the data set (single-trace domination), Fig. 3(a).
The value of the ergodicity breaking parameter EB for α0 < 0
is nearly unaffected by variations of σ2 over a wide range, see
the red symbols in Fig. 3(a). This reflects the minor change in
the spread of single traces δ2 when σ2 is varied for strongly
subdiffusive noisy HDPs, see Fig. 2(a).

C. Superdiffusive noisy HDPs, α0 = 1

The ensemble and time averaged MSDs of superdiffusive
noisy HDPs with α0 = 1 are shown in Fig. 2(c). For small
noise strengths σ2, their scaling agrees with the results for
standard HDPs, Eqs. (1) and (8). With increasing noise strength
σ2, the time averaged MSD traces δ2 grow dramatically, and
for moderate and large lag times ∆, the time averaged MSD
deviates progressively from the HDP scaling that is ballistic for
α0 = 1 (Fig. 2(c)). The scatter of the individual time averaged
MSDs δ2 becomes progressively larger and asymmetric as the
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width of p(α) increases. The amplitude of the time averaged
MSD traces δ2 for large values of σ2 grows significantly above
the asymptote for undisturbed HDPs due to single trajectory
domination. Therefore, the moments of the scatter distribution
φ(ξ) increase, see the blue symbols in Fig. 3. For large σ2, in
the later parts of the trajectories the ensemble averaged MSD
increases very fast (see the right panel in Fig. 2(c)) to meet the
value of δ2 in the limit ∆ = T . For superdiffusive HDPs, the
moments of φ(ξ) are larger than those for subdiffusive noisy
HDPs with the same σ2, compare the blue and red symbols in
Fig. 3.

V. NOISY HDPS WITH QUENCHED DISORDER

We now turn to the situation of quenched disorder in a
stratified environment, in which evenly sized domains of width
δx have a diffusivity of form (2), centered within the domain,
whose α value is noisy and with distribution (15). In this
quenched scenario, the particle experiences the same value of
α each time it revisits a given position in space. The situation
is illustrated in Figs. 1(c) and 1(d).

A. Noisy Brownian motion, α0 = 0

For quenched, noisy Brownian motion, we observe that for
small noise strength σ2 the behavior, as expected, is very close
to standard Brownian motion (not shown). For larger values of
σ2, the spread of the amplitude of individual time averaged
MSDs δ2(∆) is non-negligible even at short lag times ∆, as
shown in Fig. 4(c). This spread is more pronounced for larger
periodicities δx of the stratified medium. For small σ2, the
ensemble averaged MSD


(x − xc,1)2� computed with respect
to the center of the starting domain and the time averaged
MSD (thick blue lines) almost coincides for all lag times ∆
(not shown). Concurrently, the ergodicity breaking parameter
follows the Brownian asymptote (11), as shown by the green
symbols in Fig. 5(a). For larger values of the noise strength
σ2, the ergodicity breaking parameter deviates pronouncedly
from Eq. (11) at short lag times ∆, indicating the occurrence of
weak ergodicity breaking, along with the disparity


δ2


,


x2�,

as witnessed by large EB values in Fig. 5(b). This inequality is
particularly pronounced for larger values of the noise strength
σ2 and large periodicity δx, see the changes for varying δx
in Fig. 4(c). For wider α distributions p(α), the ensemble
averaged MSD starts close to that of the asymptote for standard
Brownian motion, while at later times, there occurs a cross-
over to the curve for the time averaged MSD (left panel, Fig.
4(c)). This behavior is also typical for sub- and superdiffusive
quenched noisy HDPs, see below. For σ2 = 1, this transition
occurs after ∼103 time steps and becomes less pronounced for
smaller periodicities δx of the medium (Fig. 4(c)).

B. Superdiffusive noisy HDPs, α0 = 1

In standard superdiffusive HDPs, there exists a finite prob-
ability of particle trapping in regions of low diffusivity near the
origin, as witnessed by the cusp around x = 0 of probability
density function (12).33 For noisy HDPs, we find that for large

values of the domain size δx and small noise strengths σ2,
the particle preferentially stays in the domain, in which it was
seeded, and the resulting ensemble averaged MSD is close to
that of the standard HDPs.33,35 Here, we again computed the
MSD with respect to the center xc,1 of the seed domain in the
form x(t = 0) − xc,1 = 0.1. The time averaged MSD is equally
close to asymptote (8) of the normal HDP. Ensemble and time
averaged MSDs converge at long lag times ∆ → T , note that
the ensemble averaged MSD here is below the time averaged
MSD, as evidenced by Figs. 4(a) and 4(b).

We start with a narrow spread of α in the spatial domains
corresponding to σ = 0.03. In this case, we find that with
decreasing domain size δx, the amplitude scatter of individual
time averaged MSDs shrinks and the amplitude of the trajec-
tory mean


δ2(∆) drops substantially (Fig. 4(a)). The reason

is that for a small domain size, there are almost no regions of
fast diffusivity. For small values Brownian asymptote, see the
dashed-dotted line in the right graph in Fig. 4(a). In such cases
of smaller domain size, the ergodicity breaking parameter at-
tains relatively small values, as shown in Fig. 5(a), indicating a
more ergodic behavior. This effect of the noise is similar to that
for noisy continuous time random walks.22 As δx increases,
the ergodicity breaking parameter approaches values close to
those of the standard HDP, EB(∆ = 1) ≈ 0.34 for α0 = −2 and
EB(∆ = 1) ≈ 1.1 for α0 = 1, with T = 104.33,35 This is indi-
cated by the dotted lines in Fig. 5(a). Thus, frequent hopping
events between individual domains destroy the characteristic
of the noise-free HDP scaling and cause the diffusion to be
more ergodic. This is our second important conclusion. We
note that homogenization theories provide an effective descrip-
tion of the heterogeneities of the environment on small scales
via an effective conductivity on larger length scales, applicable
for various random media and quasi-periodic environments.17

It is not surprising that in the periodic case, if the number of
periods is sufficiently large, the system falls into the domain
of attraction of homogenization theorems, and more ergodic
behaviour emerges. In our analysis here, obviously the case of
larger domain sizes is the more interesting one.

For largerσ values, the MSD stops following HDP scaling
law (1) and instead two nearly Brownian regimes are detected
for short and long diffusion times, see the left panel in Fig.
4(b). Similar to noisy continuous time random walks,7,22 for
noisy HDPs, we observe a superposition of anomalous scaling
for the MSD inherent to HDPs with the linear MSD increase
due to particle jumping between the stratified domains. The
latter term contributes stronger for smaller δx values: after a
given number of steps performed, the particle visits more D(x)
domains and its diffusion on the length scale ≫ δx becomes
effectively more normal and ergodic.

The time averaged MSD is an approximately linear func-
tion of the lag time ∆. For smaller domain size δx, we observe
a more confined amplitude spread of the time averaged MSD
traces δ2, see the evolution from left to right in Figs. 4(a)
and 4(b). A similar behavior occurs for subdiffusive noisy
HDPs, as demonstrated in Figs. 4(d) and 4(e) consistent with
smaller values of the ergodicity breaking parameter. This is our
third main result. For superdiffusive noisy HDPs, given large
domain sizes δx, we observe more distant particle excursions
and thus a broader amplitude spread of individual time traces
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FIG. 4. Ensemble and time averaged MSDs and amplitude scatter of individual traces δ2 for noisy HDPs with quenched disorder. The values of α, σ, and
domain size δx are indicated in the plots. The panels (a) and (b) are for superdiffusive noisy HDPs, panel (c) stands for noisy Brownian motion, and panels (d)
and (e) represent subdiffusive noisy HDPs. The MSD is computed with respect to the position of the center of the first domain,


(x(t)− xc,1)2�. Parameters:
T = 104, N = 103, and δx values are the same in each column. The notations for the curves and asymptotes are the same as in Fig. 2.

δ2(∆), particularly for large values σ2 of the noise strength
(Fig. 4(b)): at larger σ2, we correspondingly obtain larger
values of the ergodicity breaking parameter, compare panels
(a) and (b) in Fig. 5.

We find that the distribution φ(ξ) of the amplitude scatter
features a skewed form, which is characterized by its sec-
ond, third, and fourth moments corresponding to the ergo-
dicity breaking parameter, the skewness S, and the kurtosis
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FIG. 5. Ergodicity breaking parameter of noisy HDPs with quenched dis-
order of the medium. The parameters are the same as in Fig. 4, the values
for α and σ being indicated in the plots. The black dotted lines represent
the ergodicity breaking parameter EB for the standard HDPs. The large,
medium, and small symbols correspond to the lag times ∆= 1, 10, and 100,
respectively.

K , respectively. For larger values of σ2, S(ξ) and K(ξ) grow
with the domain size δx and are more irregular than the distri-
bution φ(ξ) itself, due to worsening statistics for higher order
moments (not shown). Note that for short lag times ∆/T ≪ 1,
the ergodicity breaking parameter for large domain sizes δx
approaches the values of the corresponding normal HDPs,33

compare Fig. 5(a). At small domain size δx, the non-ergodic
properties of the standard HDPs, in contrast, are masked by the
noise in the stratified spatial domains.

For superdiffusive HDPs, the particles tend to localize in
the center of each domain, while for subdiffusive values α0
< 0, they tend to spread towards regions of low diffusivity near
the domain borders. In the long time limit, the particles spread
over many domains, establishing the shape of the probability
density function P(x, t) presented in Fig. 6. The local minima
and maxima of P(x, t) correspond to the regions of low and

fast diffusivity D(x), respectively, see Figs. 1(c), 1(d), and
6. For relatively large domain size δx, the probability den-
sity function of the noisy HDPs becomes dominated by the
contribution from the seed domain. The spreading of particles
over superdiffusive HDP domains in the long time limit is
symmetric and nearly Gaussian,

P(x, t) = 1
√

4πDefft
exp

(
−
(x − xc,1)2

4Defft

)
, (20)

with the effective diffusivity Deff. The mean particle displace-
ment with respect to the center of the seed domain vanishes,
⟨x(t → ∞)⟩ → 0. To compute Deff analytically, a homogeni-
zation procedure and generic concepts of diffusion in random
and highly heterogeneous media would need to be applied.17,50

C. Subdiffusive noisy HDPs, α0 = −2

Subdiffusive noisy HDPs in the quenched scenario share
a number of trends with the above descriptions of the cases
α = 0 andα = 1. In particular, as the domain size δx decreases,
the amplitude spread of individual time averaged MSD traces
δ2 decreases (Figs. 4(d) and 4(e)). Because of the sublinear
scaling of the ensemble MSD of the normal subdiffusive HDPs
(α0 < 0), the ensemble averaged MSD approaches the time
averaged MSD


δ2(∆)


from above. Moreover, the scaling

of the ensemble averaged MSD of subdiffusive noisy HDPs
with quenched disorder turns from subdiffusive to Brownian
as the domain size δx decreases. The physical reason for this
crossover behavior is the random character of hops between
domains with a varying local exponent α. We find that, simi-
larly to superdiffusive noisy HDPs, the ensemble averaged
MSD initially follows scaling (1) of normal HDPs while at

FIG. 6. Probability density functions of noisy HDPs with quenched disorder for noise strength σ2= 1 and varying domain size δx. The other parameters are the
same as in Fig. 4. Panel (a) represents superdiffusive and panel (b) stands for subdiffusive noisy HDPs. The horizontal shift of the peak positions with respect to
those of the standard HDPs33 is due to the shift (δx) of the domain center positions, see Eq. (16). The dashed curves represent the probability density functions
of standard HDPs, given by Eq. (12), while the dashed-dotted curves are result (20).
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later times, an approximately linear scaling is observed. For
smaller periodicities δx, the linear scaling becomes dominant,
as demonstrated for large σ2 values in Fig. 4(e) from left to
right.

The probability density function of quenched noisy HDPs
in the long time limit is a combination of local probability
densities of the standard HDPs. For large periodicities δx,
the probability density function is again dominated by the
contribution from the seed domain, as can be seen in the right
panel of Fig. 6(b). Similar to superdiffusive noisy HDPs, we
find that the time averaged MSD is linear in the lag time,
δ2(∆)


∼ ∆, while the amplitude spread of individual time

averaged MSDs grows with the noise strength σ2 and becomes
diminished for smaller medium periodicities δx. We also see
that for subdiffusive noisy HDPs, the saturation of the ergo-
dicity breaking parameter to the values of normal HDPs occurs
at much smaller values of δx as compared to superdiffusive
noisy HDPs (Fig. 5(a)).

VI. CONCLUSIONS

We studied a stochastic process based on a combination
of HDPs with multiplicative noise and additional disorder of
the environment, distinguishing annealed and quenched sce-
narios. The scaling exponent α0 was taken to vary in time, or
the environment was assumed to be structured into periodic
domains of given periodicity. We investigated the diffusive and
ergodic properties of these noisy HPDs. The superposition of
the additional stochasticity onto the standard HDP with its
deterministic variation of the diffusivity revealed a variety of
new features: the scaling relations for the ensemble and time
averaged MSD of the noisy HDPs being dramatically altered
as compared to the normal HDP behavior.

For annealed disorder, the scaling exponent α of the diffu-
sivity profile switches in time and the gradient field of the par-
ticle diffusivity has a single origin at x = 0. We demonstrated
how the Gaussian spread p(α) of the scaling exponent gives
rise to a strongly asymmetric scatter of individual time aver-
aged MSD traces. Rapidly switching diffusivity profiles in such
an annealed environment cause transient particle trapping in
low-diffusivity regions. For superdiffusive motion, the effects
of the α spread are more pronounced.

In the case of a quenched environment, a spatially strati-
fied medium is modeled in terms of domains of width 2δx with
a normal distribution of the local HDP exponent. Upon particle
diffusion, the averaging is thus performed over ensembles of
particle trajectories generated for different spatial distributions
of the scaling exponents α in the domains. One of the key find-
ings is that for small periodicity δx, the sub- and superdiffusive
scaling of normal HDPs cross over to a linear growth of the
ensemble averaged MSD as function of time. External noise
thus progressively masks the statistics of the underlying HDP,
the main conclusion of this study.

We note that the noisy HDPs discussed here represent an
independent class of stochastic processes. They are specifically
different from space and/or time fractional diffusion equations
(both monofractional and distributed orders).5,7,51 The latter

are highly non-local in space and/or time and are related to
continuous time random walk processes with power-law forms
for the jump length and/or waiting time distributions. HDPs are
truly Markovian yet multiplicative processes. Any disorder in
space or time thus leads to a significantly different behaviour
of the system between HDPs and processes described by frac-
tional diffusion equations.

What could be the physical phenomena captured by the
noisy HDP discussed here? From a biological perspective, the
diffusion of small molecules in assemblies of non-identical,
interconnected cells is a relevant example. The cell-to-cell vari-
ations of the diffusivity are inherent to biological tissues, while
every individual cell features a space dependent diffusivity
in its cytoplasm.8 At cell-to-cell boundaries, the diffusivity
likely varies with a jump, as captured by our stratified model
of the quenched disorder, with possibly discontinuous diffu-
sivity across the system. We note that heterogeneous diffusiv-
ities can, for instance, play a role in the formation of gradi-
ents of morphogen molecules in a developing cell tissue,52 a
process known to involve features of anomalous diffusion. It
also features a division of fluxes of the molecules into fluxes
through cells, across the outer cell membranes, and transport in
extracellular spaces.53 Heterogeneous diffusion of water mole-
cules in brain tissues54 and strongly heterogeneous structures
of cardiac muscle tissue with nontrivial cell-cell coupling55

could be another example. Similarly, the domains in the noisy
HDP could represent internal compartments in a single cell.
The quenched case would correspond to static environments
whereas the annealed scenario would stand for environments,
which change rapidly compared to the typical crossing times
between domains.

Our results for noisy HDPs could also be useful for the
description of nano-objects trapped in dynamical temperature
fields56 and of particles in strong temperature gradients.57

Another field of relevance is the tracer diffusion in heteroge-
neous assemblies of distributed obstacles58 mimicking features
of the cell cytoplasm8 and diffusion on chemically and meso-
scopically periodically patterned solid-liquid interfaces.59 On
a macroscopic scale, water diffusion in subsurface hydrology
applications is to be mentioned,12 as well as tracer motion in
porous heterogeneous media.60,61 For the latter, there likely
exists a distance-dependent diffusivity within each pore, con-
structing a network governing, i.a., the diffusion of water
and contaminants in soil specimen.12,62 Finally, in statistical
models of financial stock price variations,63 the terms sto-
chastic versus correlated volatility widely occur, representing
the diffusivity in random walk models.64 Some patterns of
correlated or clustered volatility observed in financial data thus
correspond to a systematically varying diffusivity in our model
of quenched noisy HDPs. Some repeats of non-Brownian
up-and-down trends in stock price fluctuations64 can thus be
considered as HDPs repeatedly occurring in time.
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