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Abstract

We define and study in detail utraslow scaled Brownian motion (USBM) characterized by a time
dependent diffusion coefficient of the form D (¢) ~ 1/¢. For unconfined motion the mean squared
displacement (MSD) of USBM exhibits an ultraslow, logarithmic growth as function of time, in
contrast to the conventional scaled Brownian motion. In a harmonic potential the MSD of USBM
does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-
stationary character of the process. We show that the process is weakly non-ergodic in the sense that
the time averaged MSD does not converge to the regular MSD even at long times, and for unconfined
motion combines a linear lag time dependence with alogarithmic term. The weakly non-ergodic
behaviour is quantified in terms of the ergodicity breaking parameter. The USBM process is also
shown to be ageing: observables of the system depend on the time gap between initiation of the test
particle and start of the measurement of its motion. Our analytical results are shown to agree
excellently with extensive computer simulations.

1. Introduction

In the wake of the development of modern particle tracking techniques strong deviations of the time dependence
of the mean squared displacement (MSD) from the linear law (x?(t)) =~ t derived by Einstein [1] and
Smoluchowski [2] have been observed in a variety of complex fluidic environments [3-7]. Typically, anomalous
diffusion of the power-law form

(x2(0) = ¢ (1)
is observed, where, depending on the value of the anomalous diffusion exponent a, we distinguish subdiffision
with 0 < a < 1and superdiffusion with @ > 1 [8, 9]. Accordingly, subdiffusion was observed in the cytoplasm
ofliving cells [10, 11], in artificially crowded liquids [12, 13], and in structured or functionalized environments
[14]. Also superdiffusive motion was found in living cells [ 15, 16].

Recently, interest in ultraslow diffusion processes with the logarithmic form

(x2(8)) = log’ (1) )

of the MSD with different values for the exponent y has been revived [6]. Ultraslow diffusion may be generated
by periodically iterated maps [17] and observed for random walks on bundled structures [18]. A prototype
model for ultraslow diffusion is provided by Sinai diffusion in quenched landscapes with random force field, for
which y = 4 [19-22]. In the context of Sinai diffusion ultraslow continuous time random walks with super
heavy-tailed waiting times with y > 0 [22-25] were discussed. Ultraslow scaling of the MSD of the form (2) were
obtained in aperiodic environments (variable y) [26] and vacancy induced motion (y = 1) [27]. Moreover, it
occurs in heterogeneous diffusion processes with exponentially varying diffusivity (y = 2) [28], or interacting
many-body systems in low dimensional disordered environments with y = 1/2 [29], the dynamics of the latter
being governed by an ultraslow, ageing counting processes [30].
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Figure 1. Time dependence of the ensemble averaged MSD (x? (t)) obtained from event driven molecular dynamics simulations of
three-dimensional force-free granular gases [43]. At short times the particles follow ballistic trajectories, while for longer times the
ensemble averaged MSD has a logarithmic time dependence. The inset focuses on the logarithmic long time behaviour featuring a
linear scaling of the data on the linear-logarithmic axes.

The logarithmic time dependence (2) with y = 1 of the MSD is also observed for the self diffusion of
particles in free cooling granular gases with constant, sub-unity restitution coefficient in the homogeneous
cooling state [31]. Granular gases are rarefied granular systems, in which particles move along ballistic
trajectories between instantaneous collisions [31]. They are common in Space, for instance, in protoplanetary
discs, interstellar clouds and planetary rings [32]. At terrestrial conditions granular gases may be obtained by
placing granular matter into containers with vibrating [33] or rotating [ 34] walls. If no net external forces
(gravitation, etc.) are acting on the granular system, the motion of granular particles gradually slows down due
to dissipative collisions between them [31]. This microgravity condition can be achieved, inter alia, with
parabolic airplane flights or satellites [35—37] or by the use of diamagnetic levitation [38]. We note that in very
dense two-dimensional lattice gas systems, ultraslow diffusion emerges, as well [39].

Figure 1 shows the crossover from the ballistic to the ultraslow form (2) of the MSD of a granular gas with
constant restitution coefficient ¢ = 0.8 in the homogeneous cooling state’. Haff’s law demonstrates that the
kinetic temperature of such a free granular gas with constant restitution coefficient decays inverse-
proportionally with time, T () ~ 1/t* [40]. For the effective self diffusion of the gas particles—mediated by
particle—particle collisions—this property translates into the time dependent diffusion coefficient D (t) ~ 1/¢
[41-43]. We note that a diffusivity of the form D (t) = Dy + D)/t with acomponent decaying inverse-
proportionally with time was used in the modelling of the motion of molecules in porous environments [44] as
well as of water diffusion in brain tissue measured by magnetic resonance imaging [45].

Here we study in detail ultraslow scaled Brownian motion (USBM)—a Gaussian process with time
dependent diffusion coefficient D (¢) ~ 1/¢. Starting from the Langevin equation for USBM and a summary of
the simulations procedure we present analytical and numerical results for the MSD and the time averaged MSD
for the cases of unconfined (section 2) and confined (section 3) motion. We analyse in detail the disparity
between the ensemble and time averaged MSD and quantify the statistical scatter of the amplitude of the time
averaged MSD of individual realizations of the USBM process. Moreover we study the ageing properties of
USBM, that s, the explicit dependence of the physical observables on the time difference between the initiation
of the system and the start of the observation. In section 4 we present our conclusions. In the appendix we
present details of the calculation of higher order moments and the ergodicity breaking parameter.

2. Unconfined USBM

2.1. Overdamped Langevin equation for USBM

Anomalous diffusion processes with power-law form (1) of the MSD are often modelled in terms of scaled
Brownian motion (SBM) characterized by an explicitly time dependent diffusivity of the power-law form

D(t) ~ t* 'with 0 < a < 2, see, for instance [46—51], as well as the study by Saxton [52] and further references

The restitution coefficient € is the ratio of the particle speeds prior to and after the collision event.
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Figure 2. Schematic of the motion of a Brownian particle in a bath with decreasing temperature T (t) ~ t**~2for 0 < a < 1. The
diffusion coefficient of the Brownian particle decays with time as D () ~ t*~!. USBM corresponds to the case @ = 0, while standard
SBM is strictly limitedto 0 < a < 2 [62].

therein. In SBM this form of D(t) is combined with the regular Langevin equation [53]

dx (¢

&0 = 2@ x ¢, ()
in which ¢ (¢) represents white Gaussian noise with the normalized covariance

(c(n)g(m))=6(n-1) (4)

and zero mean (£ (t)) = 0. Time dependent diffusion coefficients appear naturally in systems that are open or
dissipate energy into other degrees of freedom such as the granular gases discussed above, see the schematic in
figure 2. Self diffusion in granular gases with a viscoelastic, relative particle speed-dependent restitution
coefficient correspond to SBM with @ = 1/6 [31, 43], while the Brownian motion of a massive granular intruder
reveals a transition between different diffusive regimes [54]. Diffusion in media with explicitly time dependent
temperature can, for instance, also be observed in snow melt dynamics [55, 56].

A diffusion equation with a time dependent diffusivity proportional to #* was originally introduced by
Batchelor [57] to describe the anomalous Richardson relative diffusion [58] in turbulent atmospheric systems.
SBM with diffusivity D (t) ~ t*~!was studied extensively during the last few years [59—63]. In particular, the
weakly non-ergodic disparity between ensemble and time averages in SBM as well as its ageing behaviour were
analysed [60—63], see also below. Processes with both time and position dependent diffusion coefficients were
also reported [64]. SBM is a Markovian process with stationary increments ¢ (¢), however, it is rendered non-
stationary by the time dependence of the coefficient D(#). SBM is therefore fundamentally different [6, 62] from
seemingly similar processes such as fractional Brownian motion or fractional Langevin equation motion [65].

Following the motivation from our studies of granular gases with constant restitution coefficient [43] we
here consider USBM with the time dependent diffusion coefficient

D)= —2 5)
1+ t/7 0

The time scale 7, defines the characteristic time beyond which the long time scaling D (¢) ~ Dyzy/t setsin. The
case (5) is explicitly excluded in the allowed range for the scaling exponent @ in SBM and, as we will see,
constitutes a new class of stochastic processes. In the following we solve the overdamped Langevin equation (3)
with the time dependent diffusion coefficient (5) analytically and perform extensive computer simulations of the
corresponding finite-difference analogue of the Langevin equation. In this procedure, at each time step the
increment of the particle position takes on the value

Xiy1 — Xi = \/ZD(I)(W+1 - m), i=0,1,2, .., (6)

where W,,; — W is the increment of the standard Wiener process and D(7) is the value of the time dependent
diffusivity (5) at the time instant i. We simulated N = 10° independent particles (runs) with the parameters
79 = land Dy = 1/2 in all graphs presented below.

2.2.Ensemble and time averaged mean squared displacements
From direct integration of the Langevin equation (3) with the time dependent diffusivity (5) we find the
ultraslow, logarithmic growth
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(ww)= [ [ JPED@IC )¢ (w))drdr

= 2Dz log(l + i] %

7o

of the ensemble averaged MSD. USBM therefore reproduces the asymptotic behaviour of the MSD for granular
gases in the homogeneous cooling state and with constant restitution coefficient [43], as shown in figure 1.

In addition to the ensemble averaged MSD (x? (¢) ) of the particle motion, it is often useful to compute the
time averaged MSD

P t—A
52(4) = i/o (' + 4) — x(¢)2dr. (8)

Here, the lag time A defines the width of the averaging window slid over the time series x(#) of the particle
position of overall length ¢ (the measurement time). Time averages of the form (8) are often used in experiments
and large scale simulations studies based on single particle tracking approaches, in which typically few but long
trajectories are available [10, 11, 66]. The careful analysis of the time averaged MSD (8) provides additional
important information on the studied process as compared to the ensemble averaged MSD {x? () ), see, for
instance, the analyses in references [11, 66]. Often one takes the additional average over N individual particle
traces 5,—2 4),

(52@)) = iia?m) ©)
N i=1 l ‘

For ergodic processes(’ such as Brownian motion, fractional Brownian motion, and fractional Langevin equation
motion the time averaged MSD converges to the ensemble averaged MSD in the limit of sufficiently long times,
lim;_, ,6%(A) = (x?(A)) [6]. This property is due to the stationarity of the increments of these processes [67].

The ergodic behaviour lim,_, ,,6%(4) = (x2(4)) of these processes holds for unconfined motion when the
system is in fact out-of-equilibrium, an advantage of the particular definition (8). Moreover, ergodic systems
fulfil the equivalence

(B2@) = (»w) (10)

even at finite ¢ [6]. Systems in which we observe the disparity (52 (4)) # (x*(A)) and therefore also
lim,_ 562 (4) # (x*(A))are called weakly non-ergodic [4-7, 68, 69] ’.

To calculate the time averaged MSD (9) for USBM we do not need to consider the mixed position
autocorrelations in the definition of the time averaged MSD, as the expression in the angular brackets simplify as
follows

F@)-=3)
1

= — /Of—A [(xZ(t’ +4)) — <X2(t'))]dt’_ a

<[x(t/ +4) - x(t/)]2>dt/

This is due to the property”

t t+A
(e (D)x(t + 4)) = /0 f0 D@D ) (¢ (£)¢ (1)) dr'de”
=f’ fHA DD st — t)drde”
0 0
=ft D()dt’ = (x2(¢)) (12)
0

for stochastic processes whose increments are independent random variables. We thus find the exact form for
the time averaged MSD of USBM

We consider processes ergodic in the Boltzmann—Khinchin sense when the long time average of a physical observable converges to the
associated time average.

Note that also transiently non-ergodic behaviour may become relevant as it may mask intrinsic relaxation times when time averages are
measured [12,70].

In contrast, this is not valid in the case of granular gases, where particles move ballistically in between instantaneous collisions [43], or for
processes driven by long-range correlated increments such as fractional Brownian motion or fractional Langevin equation motion
[6,65,71].
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Figure 3. Ensemble and time averaged MSDs for USBM with the time dependent diffusion coefficient (5). The analytical result (7) for
the MSD (x? (t)) shown by the black line compares nicely with our simulations (diamonds). Similarly, the simulations results for
different measurement times (squares and circles) agree very well with the analytical result (13) for the time averaged MSD (52 (4))
shown by the blue lines for two different measurement times. The asymptotic laws (15) and (16) are indicated by the dashed black
lines. The thin grey curves represent the results of the simulations for individual time traces.

— 2D,
(@) =200 - 24) - 26— ), (13)
t—A
where we introduced the auxiliary function
f(t):(t+10)1og[1+i). (14)
70

The time averaged MSD (13) thus crosses over from the limiting behaviour
T A t
2 - A i
<5 (A)> 2Dy, log(A) (15)

atshort lag times 7y << A < t combininga linear with a logarithmic A dependence, to the purely logarithmic
law

<52 (A)> ~ 2Dy1y log[H—To) (16)
t— A+ 70
for lag times A comparable to the trajectory length £. We see that as the lag time A approaches the measurement
time ¢, the time average MSD approaches the MSD (7), (5% (t)) — (x*(t)). The results of our simulations of the
USBM process for both ensemble and time averaged MSDs agree very well with the above analytical results, as
demonstrated in figure 3. In that plot the thin grey curves depict the simulations results for the time averaged
MSD for individual trajectories. The amplitude spread between different trajectories is fairly small for A < ¢
and increases when the lag time A approaches the trace length t due to worsening statistics.

2.3. Stochasticity of the time averaged mean squared displacement and ergodicity breaking parameter
Even ergodic processes such as Brownian motion exhibit a certain degree of stochasticity of time averaged
observables for shorter measurement times. The amplitude fluctuations at a given lag time A of the time
averaged MSD as compared to the trajectory average (9) is quantified in terms of the ergodicity breaking

parameter [6,71-73]
<(52<A>)2> - (F@y
EB(4) = lim = lim<§2> ~1, (17)

t—>c0 <W>2 t—o0




I0OP Publishing NewJ. Phys. 17 (2015) 063038 A SBodrova et al

SRS S r
—] By
i g :
1 C - 3
: N log®(t/4) ]
M ]
53| %

0,1 3
—O—t=10* ."\ ]
—O—t=9*10" 3]

sl MR | al N

10 1= 10" 10 10’ 10°
log® (t/A)

Figure 4. Ergodicity breaking parameter EB(4) = (£2(A)) — 1versus log? (t/A) for varying 4, as obtained from computer
simulations. The dashed line shows the asymptotic (20). Note the logarithm-squared horizontal axis.

where in the second equality we introduced the relative deviation [72]
5% (A
‘f = % . ( 18)
(@)

The necessary condition for ergodicity of a stochastic process is that the ergodicity breaking parameter vanishes

in the limit of infinitely long trajectories. Brownian motion provides the basal level for the approach to ergodicity
accordingto [71]

EBpum(4) = % (19)

Fractional Brownian motion and fractional Langevin equation motion are ergodic [65, 71]. Weakly non-ergodic
processes, which are characterized by the disparity (5% (4) ) # (x*(4)) [4-7,69, 72] include continuous time
random walks with scale-free distributions of waiting times [4—6, 69, 72] and heterogeneous diffusion processes
[75, 83]. In the limit of long traces, the value of their ergodicity breaking parameter remains finite, which is
indicative of the intrinsic randomness of time averages of these processes even for short lag times. In contrast,
the ergodicity breaking parameter for SBM vanishes in the limit of long trajectories [61]. The ergodicity breaking
parameter for USBM is derived in the appendix. The final expression in the relevant limit 7, < A < t reads

_ 4 (20)
log? (t/A) ’

where the constant C = 72/6 — 1 =~ 0.645. Thus, the time averaged MSD for USBM becomes increasingly
reproducible as the length of the time traces is extended, albeit the approach to zero is logarithmically slow. We
demonstrate the functional form of the ergodicity breaking parameter as function of the lag time A for two
different measurement times and the approach of EB to its asymptotic behaviour (20) in figure 4.

The ergodicity breaking parameter quantifies the statistical spread of the time averaged MSD. An important
indicator for different types of stochastic processes is also the complete distribution ¢ () [6, 69,72, 74]. As
shown in figure 5 this distribution for USBM has an asymmetric bell-shaped curve approximately centred
around the ergodic value £ = 1. The tail at larger &£ values appears somewhat longer compared to the tail at
shorter &’ For longer lag times at fixed overall length ¢ of the time series the width of the distribution ¢ (£) grows.

This is consistent with the fact that at larger value of A/¢ the time averages become more random. In figure 5 we
also show a fit to the function

EB(4)

# (&) o exp(—a/f)exp(—bf), (21)

which appears to capture the functional behaviour reasonably well. We note that the shape of ¢ (£) appears
narrower compared to the one of heterogeneous diffusion processes with power-law space dependence of the
diffusivity [75] which was fitted by a three-parameter Gamma distribution [75, 76]. In comparison, the

For Brownian motion, fractional Brownian motion, and fractional Langevin equation motion an approximately Gaussian shape of ¢ (¢) is
found [6, 74].
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Figure 5. Distribution ¢ (¢) of the amplitude scatter of the time averaged MSD. The dashed lines show the fit of the simulations data
with the function ¢ () « exp(—a/&)exp (—bé).

distribution ¢ (&) for standard SBM is quite narrow, although it widens as the exponent a approaches zero and
particularly as the lag time A grows [62].

2.4. Ageing USBM

For processes with stationary increments such as Brownian motion or fractional Brownian motion, if we initiate
the system at r= 0 but start recording it only at some later time #,, the physical observables will not explicitly
depend on the ageing time t,' . However, for several anomalous processes pronounced ageing effects are found.
These include continuous time random walk processes with scale free distributions of waiting times [78, 79],
correlated continuous time random walks [80], nonlinear maps generating subdiffusion [81], systems with
annealed and quenched disorder [82], heterogeneous diffusion processes [83], or standard SBM [63].

In contrast to subdiffusive continuous time random walk processes, in which ageing emerges due to the
divergence of a characteristic waiting time [78], in ultraslow SBM the non-stationarity of the system stems from
the explicit time dependence of the diffusion coefficient. When the recording of the particle position starts ata
finite time t,, this ageing time explicitly appears in the particle’s MSD. For the aged MSD 6, 78] in analogy to
equation (7) we find that

(s )= [ [P DI ) )drdr

= 2Dy, log(l 4+t ) (22)
ta + 70

In the limit of strong ageing, t, >> ¢, this expression yields the linear scaling

(x2(1, 1)) % 2Dgm—-. (23)
la
of the MSD with time ¢, the ageing time ¢, rescaling the effective particle diffusivity. The transition between this
ageing-dominated linear scaling for the MSD and the anomalous logarithmic time dependence in the weak
ageinglimit ¢ > t, is clearly seen in figure 6.

For the aged time averaged MSD [6, 78] we obtain the result

- 1 t—A+t, , , ,
(o7 )= — [ (e +2) —x() P ar
= 2D () = £t 8) = (1t = 4) + £ (1)), (24)
t—A

where the auxiliary function £ (¢) was defined in equation (14). In thelimit 7p « A < tand A < t, theaged
time averaged MSD factories into a term containing all the information on the ageing and measurement times ¢,
and t, and another capturing the physically relevant dependence on the lag time A and the measurement time ¢

10 . . . . . . .
For confined fractional Langevin equation motion, a transient ageing dependence exists [77].

7
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Figure 6. Ensemble and time averaged MSDs (x2(t, t,))and (5a2 (A)) for ageing USBM. The measurement timeis = 9 x 10* and
the ageing time was chosen as ¢, = 10%. Symbols: simulations results. Lines: theoretical results of equations (22) and (24).
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= 10 3 a N \ 3
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Figure 7. Time averaged MSD @) versus ageing time .. The analytical results (25) and (26) are shown by the dashed lines, while the
symbols correspond to the results of simulations. Parameters: measurement time ¢ = 10 and lagtime 4 = 10.

<5§(A, ta)> ~2Dofoélog(l +i). (25)
a
This factorization is analogous to that of heterogeneous diffusion processes [83], scale-free subdiffusive
continuous time random walks [78], and standard SBM [63]. However, in contrast to these processes the aged
time averaged MSD for short lag times does not factorize into the product of the non-aged time averaged MSD
(16) and a factor containing the ageing time.
For strong ageing t, > t we obtain the linear scaling

(67(a, 1)) NZDOTOtA. (26)
a

In this limit, that is, the system becomes apparently ergodic and we observe the equality

(82(4, t,)) = (x2(A, t,)),as can be seen from comparison with equations (23) and (26). Figure 7 shows the

convergence of the time averaged MSD to the limiting behaviour (26). Such a behaviour was previously observed for

aged subdiffusive SBM [63], heterogeneous diffusion processes [83], and continuous time random walk processes

[78]. In the case of USBM this phenomena has a clear physical explanation: at the beginning of the experiment the

diffusion coefficient D(¢) significantly decreases during the measurement time ¢ > 7, from D (0) = D, to

D (t) ~ Dyty/t,and the system is strongly non-stationary. In contrast, after along ageing period ¢, > t the

diffusion coefficient remains practically unchanged during the measurement time, D (¢, + t) =~ D(t,) = Dyto/t,.

8
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Figure 8. Ergodicity breaking parameter EB, normalized by the Brownian value EBgy (19) as function of ageing time ¢,,. The dashed
lines correspond to the analytical result (27), while the symbols are the results of simulations. Parameters are the same as in figure 7.
For strong ageing, t, > t, EB, does not depend on t, and approaches EBgy (19).

Figure 7 explicitly shows how the amplitude of the time averaged MSD is reduced due to ageing in the
system. How do the fluctuations of individual time averaged MSD traces change in the presence of ageing? The
derivation of the ergodicity breaking parameter for the aged process is provided in the appendix. The final result

inthelimit A < t and A < t, assumes the form
4At/t
EB, ~ /ta ) (27)
3t, (1 + t/t,)log?(1 + t/t,)

In the strong ageing limit ¢, > t the ergodicity breaking parameter EB, is independent of the ageing time ,, and
itasymptotically converges to the result (19) of Brownian diffusion. Our theoretical results agree well with the
simulations, as witnessed by figure 8. For weak ageing ¢, < A, t the result (20) of the non-aged USBM process is
recovered.

3. Confined USBM

The motion of particles in external confinement is an important physical concept for applications of stochastic
processes, and it is also relevant from an experimental point of view. Namely, the motion of particles in cells may
repeatedly hit the cell wall, or the tracer particles may experience a restoring force in particle tracing experiments
by help of optical tweezers. Here we consider the generic case of confinement in an harmonic potential. USBM in
the presence of such a linear restoring force is governed by the overdamped Langevin equation with additional
Hookean force term —kx,

% = 2D(1) x (1) — kx. (28)

3.1. Ensemble and time averaged mean squared displacements
The ensemble averaged MSD follows directly from this stochastic equation, and we obtain

<x2(t)> = 2Dy & (t + 7). (29)

Here we defined the auxiliary function

&(2) = e—2kz/2 z exp(=y) J’)
2kzg }/

= e72*(=+=0)[ Bi(2kz) — Ei(zkzo)] (30)
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where in the second line we used the definition of the exponential integral

Ei(z) = _/oo Mdy. (31)
—z y
The asymptotic behaviour of the MSD for long times ¢ > 1/k has the time dependence
Dyt
(1) ~ . 32
(x*(1)) " (32)

Reflecting the temporal decay of the temperature encoded in the time dependent diffusion coefficient (5) we
observe the 1/t scaling of the MSD in confinement. This underlines the highly non-stationary and athermal
character of this process [60, 62, 63].

The time averaged MSD for confined USBM is obtained from the relation

<W> = t_LA OH‘ [<x2(t’ +4)) = 2{x()x(t' +4)) + <x2(t’)>]dt’. (33)

The covariance of the position for ultraslow SBM in confinement can no longer be simplified according to
equation (12) but has the time dependence

<x(t1)x(t2)> = 2Dyroe (=) & (10 + 1,). (34)

Introducing relations (29) and (34) into equation (33) we obtain

Y DoTO t+ 19 _
<5 (A)>_(t—A)k{10g(A+To) gt +m)

+ (1 —2e‘kA)llog(l + t_A)— %(t—A+TO)]

4]

+ &(A + ro)}. (35)
For long times and strong external confinement, { t, ta A} > { 1 / k, 10} this expression simplifies to

57@)) ~ Dot ( A) L) DY )
<5 (A)> - [z L+ 1og(10) 1og(10)]. (36)

The time averaged MSD has a pronounced plateau for A < ¢, t,,

= 2D
() 2 )

70

that s, in this regime the time averaged MSD is independent of the lag time, compare the discussion in references
[62,63]. Simulations based on the Langevin equation with the Hookean forcing are in excellent agreement with
these analytical results, as shown in figure 9.

3.2. Ageing USBM in confinement

3.2.1. Ensemble averaged mean squared displacement

For confined ageing USBM, in which we measure the MSD starting from the ageing time ¢, until time t, the result
for the MSD becomes

(x2(t, tu)>=<[x(tu +1) - x(ta)]2>
= (2t + 1) + (¥2(1) = 2(x(ta + Dx (1))
= 2DOTO[%(ta +19) + &ty + t+19) — 267RE(t, + 1'0)], (38)

where & (x) is defined in equation (30). Expression (38) reduces to equation (29) for vanishing ageing, ¢, = 0.
However, even in the presence of weak ageing, t, < 1/k, atlong times t > 1/k the behaviour of the MSD reads

tg D

(x2(t, t2)) ~ 2Dy0 log(l +—)+ 0% (39)
70 kt

contrasting the behaviour in equation (32). The ensemble averaged MSD for ageing USBM at different ageing

times is depicted in figure 10. At short times t < 1/k the weakly aged MSD follows the non-aged behaviour.

Eventually it attains the plateau given by the first term in equation (39), instead of decaying towards zero as in the
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Figure 9. Ensemble and time averaged MSDs (x?(t) ) and (62 (4) ) for confined USBM. The black line represents the analytical result
(29), while the blue line denotes equation (35). The red line shows the asymptotic behaviour (36), and the horizontal dashed line the
leading term (37). The symbols correspond to the simulations of equation (28).

<x*>, t=0.1

Figure 10. Ensemble averaged MSD (x?2 (t, t,) ) for confined ageing USBM at different ageing times: ¢, = 0 (no ageing, black line),
t,=0.1 (weak ageing, red line), and ¢, = 10° (strong ageing, blue line). Note that for better visibility the curve for t, = 10° was
multiplied by a factor of 10°.

non-aged case. In the analysis of experimental data times the exact moment of the system’s initiation may often
not be known, for instance, when measuring biological cells. The apparent plateau revealed here for confined
ageing USBM dynamics may thus erroneously be mistaken as a signature of a stationary process.

Expanding the exponential integral in equation (38), in the strong ageing limit ¢, > {z,, 1/k} we find

Doz 1
206 t,)) ~ =21 + — 2e7H|. 40
bea (82 1a)) kt, 1+ t/t, ¢ (40)

For t <« 1/k we recover the unconfined result (23). In the opposite limit > 1/k the behaviour of equation (40)
crosses over to

Dot 1 1
204 1)) ~ — 2 — 4 ) 41
fea (8 1a)) k \t, to+¢t (41)

In this case we recover a transition between two plateaus, as it was observed for subdiffusive SBM [63]. Namely,
for short measurement times t < t, we find from result (41) that
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2Dy
(x2(t, ta)) ~ =2, (42)
kt,
while at long measurement times t >> ¢, this turns to
D()To
(xZ(t, 1)) ~ . (43)
kt,

This behaviour, which appears unique for USBM and SBM, is depicted in figure 10.

3.2.2. Time averaged mean squared displacement
The time averaged MSD for ageing confined USBM is derived analogously to the non-aged case, yielding

()= 2 e 222

- ‘g(ta+t—A+TO)+%(ta+TO)]

t,+1t+7
+10g LaT T 0
t,+ A+ 19

—%(ta+t+ro)+%(tu+A+ro)}. (44)

In the limit of strong confinement 1/k < { tor £, A } this expression can be significantly simplified to obtain

—- Dy t+t,+ 10 t—A
5{12 A ty)) ) ~ 1 +1 1+ . 45
< ( )> k(t—A)[Og(ta+A+ro) Og( ta+70]] (45)

For A < t, t, we again find an apparent plateau

= 2Dy t
62(A,t,) ) ~ log| 1+ . 46
(6204, )) ~ =2 g( tM] (46)
In the case of strong ageing t, > t we find
S PR 2D
(67(a t)) ~ =22, (47)
kt

a

Comparison to equation (42) shows that the time averaged MSD becomes equal to the ensemble MSD in this
strong ageing regime, and ergodicity is apparently restored as in the unconfined case. The behaviour of the
ensemble and time averaged MSDs for confined ageing USBM are depicted in figure 11.

The ergodicity breaking parameter EB for confined USBM is depicted in figure 12 for both absence and
presence of ageing. It is a decreasing function of the ratio t/A for large /A, while at small values of /A it remains
practically unchanged.

4, Conclusions

We proposed and studied USBM, a new anomalous stochastic process with a time dependent diffusion
coefficient of the form D () ~ 1/t. Formally USBM corresponds to the lower bound a = 0 of scaled Brownian
motion with diffusivity D (t) ~ t*~! (0 < a) [59-63], yet its dynamical behaviour is significantly different. We
showed that USBM vyields a logarithmic time dependence of the MSD rather than the power-law scaling of SBM.
USBM’s time averaged MSD was shown to acquire a combination of power-law and logarithmic lag time
dependence. USBM is weakly non-ergodic and ageing. The ergodicity breaking parameter quantifying the
random character of time averages of the MSD has a weak logarithmic dependence on the ratio A/t oflag time A
and length f of the recorded trajectories, tending to zero in the limit of infinitely long traces and/or short lag
times. In the case of strong ageing the system tends to usual Brownian motion and the behaviour of the system
becomes apparently ergodic. Under external confinement the behaviour of the USBM dynamics exhibits an
apparent plateau for the time averaged MSD, while the ensemble averaged MSD decays proportionally to 1/t at
longer times, reflecting the highly non-stationary character of USBM. Ageing produces an apparent plateau for
the ensemble averaged MSD and a crossover between two plateaus for the time averaged MSD. USBM adds to
the rich variety of ultraslow processes with logarithmic growth of the ensemble averaged MSD yet displays
several unique features in comparison to other ultraslow processes.
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Figure 11. Ensemble and time averaged MSDs (x2 (¢, t,) ) and (572 (4) ) for confined ageing USBM. The symbols depict simulations of
equation (28) for the trace length t= 10*. The blue line corresponds to the theoretical result (44), and the red line shows the asymptotic
(45). The horizontal dashed line shows the leading term (46).
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Figure 12. Ergodicity breaking parameter EB as function of ¢/A in the non-aged (, = 0) and aged (¢, = 3000) cases.

Potential applications of USBM are foremost in the description of random particle motion in intrinsically
non-equilibrium system such as free cooling granular gases or systems coupled to explicitly time dependent
thermal reservoirs. On a more general level we hope that the discussion of ultraslow processes will lead to a
rethinking of claims in diffusion studies that certain particles appear immobile. Namely, one often observes a
population splitting into a (growing) fraction of immobile particles and another fraction of particles performing
anomalous diffusion of the form (1) [84]. Ageing continuous time random walks [78] or heterogeneous
diffusion processes [28, 83] give rise to such a behaviour. However, given the tools provided here on ultraslow
diffusion it might be worthwhile checking whether the observed ‘immobile’ particles may in fact perform
logarithmically slow diffusion.
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Appendix. Derivation of the ergodicity breaking parameter

The ergodicity breaking parameter (17) requires the fourth order moment

Ty

x (x(t2+A) —x(tz)) >dt2dt1. (A.1)

Using Isserlis’ or Wick’s theorem for Gaussian processes the integrand can be rewritten in the form
2 2
<(x(t1 +4) - x(1)) (x(t+4) - x(8)) >
2 2
=((xtn+a) =x(0)) ){ (x4 2) = x(2)))

+2<(x(t1+A)—x(t1)>(x(t2+A)—x(tz))>2. (A2)

The numerator in equation (17) may thus be represented as
——\2 ——\2
N = < (52@) > - (F@)

= ; _ZA)Z fot—A foz—A < [x(h+A4) —x(h)]

X [x(t+4) = x(1)] ) deyds (A3)

Taking into account relation (12) and the symmetry of expression (A.3) with respect to t; and t,, we get
_ 4
(t— A4y

ft -4 /;lt A( (1 +A)> <x<t1 +A)x(t2)>)2dt2dt1. (A.4)

The integrand is non-zero onlyif t; + A > f,. Introducing the new variable 7 = ¢, — t; and changing the order
of integration, we arrive at the following expression

B (t —44)2 /oA
X /O_ N ( <x2(t1 +A)> - <x2(tl + T)>)2dt1df. (A.5)

Introducing the MSD (7) and changing the variable ¢; + 75 — t;, we obtain
16D To+t—A-1 t A
_ 16Djzj f / ' 1+ 2y de. (A.6)
T (t—A) h+rt
Let us consider the case 7p < A < t. Introducing the variables x = #;/A and y = 7/A and changing the upper
limit of integration to infinity and the lower limit to zero in the inner integral, we get

16D 75 CA?
M (A.7)
(t - 4)?
Here the constant Cis given by
72
C= f JARt ( ]dxd y =% — 1= 0605, (A8)

Dividing N by (6% (A) )* from equation (16) we recover the final expression (20) for the ergodicity breaking
parameter.
In the case of ageing

(@) - (30 ta>>2)
EB,(4) = lim .

o (s3a )

(A9)
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The derivation is similar to the non-aged case

<(53(4, ta))2> - (i)

16D tatto+t—A—1 t + A
16Dz / f ' log? [ 22 |drde. (A.10)
(t—A)2 tat1o h+rt
Expanding the integrand for #; > ¢, > 1, we get
2
H+ A A —
logz( L )z( T) . (A.11)
h+7 51
Evaluating the integral for ¢, > A, t > A, we obtain
—5—\2 ——\2 16D 72 A
<(53(A>) > - (B2@)) = ==, (A12)
3tat(t + t,,)

and the ergodicity breaking parameter EB, (4) is then given by equation (27).
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