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Abstract
Wedefine and study in detail utraslow scaled Brownianmotion (USBM) characterized by a time
dependent diffusion coefficient of the form D t t( ) 1≃ . For unconfinedmotion themean squared
displacement (MSD) ofUSBMexhibits an ultraslow, logarithmic growth as function of time, in
contrast to the conventional scaled Brownianmotion. In a harmonic potential theMSDofUSBM
does not saturate but asymptotically decays inverse-proportionally to time, reflecting the highly non-
stationary character of the process.We show that the process is weakly non-ergodic in the sense that
the time averagedMSDdoes not converge to the regularMSD even at long times, and for unconfined
motion combines a linear lag time dependence with a logarithmic term. Theweakly non-ergodic
behaviour is quantified in terms of the ergodicity breaking parameter. TheUSBMprocess is also
shown to be ageing: observables of the systemdepend on the time gap between initiation of the test
particle and start of themeasurement of itsmotion.Our analytical results are shown to agree
excellently with extensive computer simulations.

1. Introduction

In thewake of the development ofmodern particle tracking techniques strong deviations of the time dependence
of themean squared displacement (MSD) from the linear law x t t( )2〈 〉 ≃ derived by Einstein [1] and
Smoluchowski [2] have been observed in a variety of complex fluidic environments [3–7]. Typically, anomalous
diffusion of the power-law form

x t t( ) (1)2 ≃ α

is observed, where, depending on the value of the anomalous diffusion exponentα, we distinguish subdiffision
with 0 1α< < and superdiffusionwith 1α > [8, 9]. Accordingly, subdiffusionwas observed in the cytoplasm
of living cells [10, 11], in artificially crowded liquids [12, 13], and in structured or functionalized environments
[14]. Also superdiffusivemotionwas found in living cells [15, 16].

Recently, interest in ultraslow diffusion processes with the logarithmic form

x t t( ) log ( ) (2)2 ≃ γ

of theMSDwith different values for the exponent γ has been revived [6]. Ultraslow diffusionmay be generated
by periodically iteratedmaps [17] and observed for randomwalks on bundled structures [18]. A prototype
model for ultraslowdiffusion is provided by Sinai diffusion in quenched landscapes with random forcefield, for
which 4γ = [19–22]. In the context of Sinai diffusion ultraslow continuous time randomwalkswith super
heavy-tailedwaiting timeswith 0γ > [22–25]were discussed. Ultraslow scaling of theMSDof the form (2)were
obtained in aperiodic environments (variable γ) [26] and vacancy inducedmotion ( 1γ = ) [27].Moreover, it
occurs in heterogeneous diffusion processes with exponentially varying diffusivity ( 2γ = ) [28], or interacting
many-body systems in low dimensional disordered environments with 1 2γ = [29], the dynamics of the latter
being governed by an ultraslow, ageing counting processes [30].
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The logarithmic time dependence (2)with 1γ = of theMSD is also observed for the self diffusion of
particles in free cooling granular gases with constant, sub-unity restitution coefficient in the homogeneous
cooling state [31]. Granular gases are rarefied granular systems, inwhich particlesmove along ballistic
trajectories between instantaneous collisions [31]. They are common in Space, for instance, in protoplanetary
discs, interstellar clouds and planetary rings [32]. At terrestrial conditions granular gasesmay be obtained by
placing granularmatter into containers with vibrating [33] or rotating [34]walls. If no net external forces
(gravitation, etc.) are acting on the granular system, themotion of granular particles gradually slows downdue
to dissipative collisions between them [31]. Thismicrogravity condition can be achieved, inter alia, with
parabolic airplane flights or satellites [35–37] or by the use of diamagnetic levitation [38].We note that in very
dense two-dimensional lattice gas systems, ultraslowdiffusion emerges, as well [39].

Figure 1 shows the crossover from the ballistic to the ultraslow form (2) of theMSDof a granular gas with
constant restitution coefficient 0.8ε = in the homogeneous cooling state5.Haffʼs law demonstrates that the
kinetic temperature of such a free granular gas with constant restitution coefficient decays inverse-
proportionally with time,T t t( ) 1 2≃ [40]. For the effective self diffusion of the gas particles—mediated by
particle–particle collisions—this property translates into the time dependent diffusion coefficient D t t( ) 1≃
[41–43].We note that a diffusivity of the form D t D D t( ) 0 1= + with a component decaying inverse-
proportionally with timewas used in themodelling of themotion ofmolecules in porous environments [44] as
well as of water diffusion in brain tissuemeasured bymagnetic resonance imaging [45].

Here we study in detail ultraslow scaled Brownianmotion (USBM)—aGaussian process with time
dependent diffusion coefficient D t t( ) 1≃ . Starting from the Langevin equation forUSBMand a summary of
the simulations procedure we present analytical and numerical results for theMSD and the time averagedMSD
for the cases of unconfined (section 2) and confined (section 3)motion.We analyse in detail the disparity
between the ensemble and time averagedMSDand quantify the statistical scatter of the amplitude of the time
averagedMSDof individual realizations of theUSBMprocess.Moreover we study the ageing properties of
USBM, that is, the explicit dependence of the physical observables on the time difference between the initiation
of the system and the start of the observation. In section 4we present our conclusions. In the appendix we
present details of the calculation of higher ordermoments and the ergodicity breaking parameter.

2.UnconfinedUSBM

2.1.Overdamped Langevin equation forUSBM
Anomalous diffusion processes with power-law form (1) of theMSD are oftenmodelled in terms of scaled
Brownianmotion (SBM) characterized by an explicitly time dependent diffusivity of the power-law form
D t t( ) 1≃ α− with 0 2α< < , see, for instance [46–51], as well as the study by Saxton [52] and further references

Figure 1.Time dependence of the ensemble averagedMSD x t( )2〈 〉obtained from event drivenmolecular dynamics simulations of
three-dimensional force-free granular gases [43]. At short times the particles follow ballistic trajectories, while for longer times the
ensemble averagedMSDhas a logarithmic time dependence. The inset focuses on the logarithmic long time behaviour featuring a
linear scaling of the data on the linear-logarithmic axes.

5
The restitution coefficient ε is the ratio of the particle speeds prior to and after the collision event.
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therein. In SBM this formofD(t) is combinedwith the regular Langevin equation [53]

x t

t
D t t

d ( )

d
2 ( ) ( ), (3)ζ= ×

inwhich t( )ζ represents whiteGaussian noise with the normalized covariance

t t t t( ) ( ) ( ) (4)1 2 1 2ζ ζ δ= −

and zeromean t( ) 0ζ〈 〉 = . Time dependent diffusion coefficients appear naturally in systems that are open or
dissipate energy into other degrees of freedom such as the granular gases discussed above, see the schematic in
figure 2. Self diffusion in granular gases with a viscoelastic, relative particle speed-dependent restitution
coefficient correspond to SBMwith 1 6α = [31, 43], while the Brownianmotion of amassive granular intruder
reveals a transition between different diffusive regimes [54]. Diffusion inmediawith explicitly time dependent
temperature can, for instance, also be observed in snowmelt dynamics [55, 56].

A diffusion equationwith a time dependent diffusivity proportional to t2 was originally introduced by
Batchelor [57] to describe the anomalous Richardson relative diffusion [58] in turbulent atmospheric systems.
SBMwith diffusivity D t t( ) 1≃ α− was studied extensively during the last few years [59–63]. In particular, the
weakly non-ergodic disparity between ensemble and time averages in SBMaswell as its ageing behaviourwere
analysed [60–63], see also below. Processes with both time and position dependent diffusion coefficients were
also reported [64]. SBM is aMarkovian process with stationary increments t( )ζ , however, it is rendered non-
stationary by the time dependence of the coefficientD(t). SBM is therefore fundamentally different [6, 62] from
seemingly similar processes such as fractional Brownianmotion or fractional Langevin equationmotion [65].

Following themotivation fromour studies of granular gases with constant restitution coefficient [43]we
here considerUSBMwith the time dependent diffusion coefficient

D t
D

t
( )

1
. (5)0

0τ
=

+

The time scale 0τ defines the characteristic time beyondwhich the long time scaling D t D t( ) 0 0τ∼ sets in. The
case (5) is explicitly excluded in the allowed range for the scaling exponent α in SBMand, aswewill see,
constitutes a new class of stochastic processes. In the followingwe solve the overdamped Langevin equation (3)
with the time dependent diffusion coefficient (5) analytically and perform extensive computer simulations of the
corresponding finite-difference analogue of the Langevin equation. In this procedure, at each time step the
increment of the particle position takes on the value

x x D i W W i2 ( ) ( ), 0, 1, 2, , (6)i i i i1 1− = − = …+ +

whereW Wi i1 −+ is the increment of the standardWiener process andD(i) is the value of the time dependent
diffusivity (5) at the time instant i.We simulated N 103= independent particles (runs) with the parameters

10τ = and D 1 20 = in all graphs presented below.

2.2. Ensemble and time averagedmean squared displacements
Fromdirect integration of the Langevin equation (3)with the time dependent diffusivity (5) wefind the
ultraslow, logarithmic growth

Figure 2. Schematic of themotion of a Brownian particle in a bathwith decreasing temperature T t t( ) 2 2≃ α− for 0 1α⩽ < . The
diffusion coefficient of the Brownian particle decays with time as D t t( ) 1≃ α− . USBMcorresponds to the case 0α = , while standard
SBM is strictly limited to 0 2α< < [62].
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x t D t D t t t t t

D
t

( ) ( ) ( ) ( ) ( ) d d

2 log 1 (7)

t t
2

0 0

0 0
0

⎛
⎝⎜

⎞
⎠⎟

∫ ∫ ζ ζ

τ
τ

= ′ ″ ′ ″ ″ ′

= +

of the ensemble averagedMSD.USBM therefore reproduces the asymptotic behaviour of theMSD for granular
gases in the homogeneous cooling state andwith constant restitution coefficient [43], as shown infigure 1.

In addition to the ensemble averagedMSD x t( )2〈 〉of the particlemotion, it is often useful to compute the
time averagedMSD

t
x t x t t( )

1
[ ( ) ( )] d . (8)

t
2

0

2∫δ Δ
Δ

Δ=
−

′ + − ′ ′
Δ−

Here, the lag timeΔ defines thewidth of the averagingwindow slid over the time series x(t) of the particle
position of overall length t (themeasurement time). Time averages of the form (8) are often used in experiments
and large scale simulations studies based on single particle tracking approaches, in which typically few but long
trajectories are available [10, 11, 66]. The careful analysis of the time averagedMSD (8) provides additional
important information on the studied process as compared to the ensemble averagedMSD x t( )2〈 〉, see, for
instance, the analyses in references [11, 66]. Often one takes the additional average overN individual particle
traces ( )i

2δ Δ ,

N
( )

1
( ) . (9)

i

N

i
2

1

2∑δ Δ δ Δ=
=

For ergodic processes6 such as Brownianmotion, fractional Brownianmotion, and fractional Langevin equation
motion the time averagedMSD converges to the ensemble averagedMSD in the limit of sufficiently long times,

xlim ( ) ( )t
2 2δ Δ Δ= 〈 〉→∞ [6]. This property is due to the stationarity of the increments of these processes [67].

The ergodic behaviour xlim ( ) ( )t
2 2δ Δ Δ= 〈 〉→∞ of these processes holds for unconfinedmotionwhen the

system is in fact out-of-equilibrium, an advantage of the particular definition (8).Moreover, ergodic systems
fulfil the equivalence

x( ) ( ) (10)2 2δ Δ Δ=

even atfinite t [6]. Systems inwhichwe observe the disparity x( ) ( )2 2δ Δ Δ〈 〉 ≠ 〈 〉 and therefore also
xlim ( ) ( )t

2 2δ Δ Δ≠ 〈 〉→∞ are calledweakly non-ergodic [4–7, 68, 69] 7.
To calculate the time averagedMSD (9) forUSBMwedonot need to consider themixed position

autocorrelations in the definition of the time averagedMSD, as the expression in the angular brackets simplify as
follows

t
x t x t t

t
x t x t t

( )
1

[ ( ) ( )] d

1
( ) ( ) d . (11)

t

t

2

0

2

0

2 2⎡⎣ ⎤⎦

∫
∫

δ Δ
Δ

Δ

Δ
Δ

=
−

′ + − ′ ′

=
−

′ + − ′ ′

Δ

Δ

−

−

This is due to the property8

x t x t D t D t t t t t

D t D t t t t t

D t t x t

( ) ( ) ( ) ( ) ( ) ( ) d d

( ) ( ) ( )d d

( )d ( ) (12)

t t

t t

t

0 0

0 0

0

2

∫ ∫
∫ ∫
∫

Δ ζ ζ

δ

+ = ′ ″ ′ ″ ′ ″

= ′ ″ ′ − ″ ′ ″

= ′ ′ =

Δ

Δ

+

+

for stochastic processes whose increments are independent random variables.We thusfind the exact form for
the time averagedMSDofUSBM

6
We consider processes ergodic in the Boltzmann–Khinchin sensewhen the long time average of a physical observable converges to the

associated time average.
7
Note that also transiently non-ergodic behaviourmay become relevant as itmaymask intrinsic relaxation timeswhen time averages are

measured [12, 70].
8
In contrast, this is not valid in the case of granular gases, where particlesmove ballistically in between instantaneous collisions [43], or for

processes driven by long-range correlated increments such as fractional Brownianmotion or fractional Langevin equationmotion
[6, 65, 71].
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D

t
t t( )

2
[ ( ) ( ) ( )], (13)2 0 0δ Δ

τ
Δ

ℓ ℓ Δ ℓ Δ=
−

− − −

wherewe introduced the auxiliary function

t t
t

( ) ( )log 1 . (14)0
0

⎛
⎝⎜

⎞
⎠⎟ℓ τ

τ
= + +

The time averagedMSD (13) thus crosses over from the limiting behaviour

D
t

t
( ) 2 log (15)2

0 0 ⎜ ⎟
⎛
⎝

⎞
⎠δ Δ τ Δ

Δ
∼

at short lag times t0τ Δ≪ ≪ combining a linearwith a logarithmicΔ dependence, to the purely logarithmic
law

D
t

t
( ) 2 log (16)2

0 0
0

0

⎛
⎝⎜

⎞
⎠⎟δ Δ τ

τ
Δ τ

∼
+

− +

for lag times Δ comparable to the trajectory length t.We see that as the lag timeΔ approaches themeasurement
time t, the time averageMSDapproaches theMSD (7), t x t( ) ( )2 2δ〈 〉 → 〈 〉. The results of our simulations of the
USBMprocess for both ensemble and time averagedMSDs agree verywell with the above analytical results, as
demonstrated infigure 3. In that plot the thin grey curves depict the simulations results for the time averaged
MSD for individual trajectories. The amplitude spread between different trajectories is fairly small for tΔ ≪
and increases when the lag timeΔ approaches the trace length t due toworsening statistics.

2.3. Stochasticity of the time averagedmean squared displacement and ergodicity breaking parameter
Even ergodic processes such as Brownianmotion exhibit a certain degree of stochasticity of time averaged
observables for shortermeasurement times. The amplitude fluctuations at a given lag timeΔ of the time
averagedMSD as compared to the trajectory average (9) is quantified in terms of the ergodicity breaking
parameter [6, 71–73]

( )
EB( ) lim

( ) ( )

( )
lim 1, (17)

t t

2
2

2
2

2
2

2Δ
δ Δ δ Δ

δ Δ
ξ=

−
= −

→∞ →∞

Figure 3.Ensemble and time averagedMSDs forUSBMwith the time dependent diffusion coefficient (5). The analytical result (7) for
theMSD x t( )2〈 〉 shown by the black line compares nicely with our simulations (diamonds). Similarly, the simulations results for

differentmeasurement times (squares and circles) agree very well with the analytical result (13) for the time averagedMSD ( )2δ Δ〈 〉
shown by the blue lines for two differentmeasurement times. The asymptotic laws (15) and (16) are indicated by the dashed black
lines. The thin grey curves represent the results of the simulations for individual time traces.
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where in the second equality we introduced the relative deviation [72]

( )

( )
. (18)

2

2
ξ

δ Δ

δ Δ
=

The necessary condition for ergodicity of a stochastic process is that the ergodicity breaking parameter vanishes
in the limit of infinitely long trajectories. Brownianmotion provides the basal level for the approach to ergodicity
according to [71]

t
EB ( )

4

3
. (19)BM Δ Δ=

Fractional Brownianmotion and fractional Langevin equationmotion are ergodic [65, 71].Weakly non-ergodic
processes, which are characterized by the disparity x( ) ( )2 2δ Δ Δ〈 〉 ≠ 〈 〉 [4–7, 69, 72] include continuous time
randomwalkswith scale-free distributions of waiting times [4–6, 69, 72] and heterogeneous diffusion processes
[75, 83]. In the limit of long traces, the value of their ergodicity breaking parameter remains finite, which is
indicative of the intrinsic randomness of time averages of these processes even for short lag times. In contrast,
the ergodicity breaking parameter for SBMvanishes in the limit of long trajectories [61]. The ergodicity breaking
parameter forUSBM is derived in the appendix. Thefinal expression in the relevant limit t0τ Δ≪ ≪ reads

C

t
EB( )

4

log ( )
, (20)

2
Δ

Δ
∼

where the constant C 6 1 0.6452π= − ≃ . Thus, the time averagedMSD forUSBMbecomes increasingly
reproducible as the length of the time traces is extended, albeit the approach to zero is logarithmically slow.We
demonstrate the functional formof the ergodicity breaking parameter as function of the lag timeΔ for two
differentmeasurement times and the approach of EB to its asymptotic behaviour (20) infigure 4.

The ergodicity breaking parameter quantifies the statistical spread of the time averagedMSD. An important
indicator for different types of stochastic processes is also the complete distribution ( )ϕ ξ [6, 69, 72, 74]. As
shown infigure 5 this distribution forUSBMhas an asymmetric bell-shaped curve approximately centred
around the ergodic value 1ξ = . The tail at larger ξ values appears somewhat longer compared to the tail at
shorter ξ9. For longer lag times atfixed overall length t of the time series thewidth of the distribution ( )ϕ ξ grows.
This is consistent with the fact that at larger value of tΔ the time averages becomemore random. Infigure 5we
also show afit to the function

a b( ) exp( )exp( ), (21)ϕ ξ ξ ξ∝ − −

which appears to capture the functional behaviour reasonably well.We note that the shape of ( )ϕ ξ appears
narrower compared to the one of heterogeneous diffusion processes with power-law space dependence of the
diffusivity [75]whichwasfitted by a three-parameter Gammadistribution [75, 76]. In comparison, the

Figure 4.Ergodicity breaking parameter EB( ) ( ) 12Δ ξ Δ= 〈 〉 − versus tlog ( )2 Δ for varyingΔ, as obtained from computer
simulations. The dashed line shows the asymptotic (20).Note the logarithm-squared horizontal axis.

9
For Brownianmotion, fractional Brownianmotion, and fractional Langevin equationmotion an approximatelyGaussian shape of ( )ϕ ξ is

found [6, 74].
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distribution ( )ϕ ξ for standard SBM is quite narrow, although it widens as the exponentα approaches zero and
particularly as the lag timeΔ grows [62].

2.4. AgeingUSBM
For processes with stationary increments such as Brownianmotion or fractional Brownianmotion, if we initiate
the system at t=0but start recording it only at some later time ta, the physical observables will not explicitly
depend on the ageing time ta

10. However, for several anomalous processes pronounced ageing effects are found.
These include continuous time randomwalk processes with scale free distributions of waiting times [78, 79],
correlated continuous time randomwalks [80], nonlinearmaps generating subdiffusion [81], systemswith
annealed and quenched disorder [82], heterogeneous diffusion processes [83], or standard SBM[63].

In contrast to subdiffusive continuous time randomwalk processes, inwhich ageing emerges due to the
divergence of a characteristic waiting time [78], in ultraslow SBM the non-stationarity of the system stems from
the explicit time dependence of the diffusion coefficient.When the recording of the particle position starts at a
finite time ta, this ageing time explicitly appears in the particleʼsMSD. For the agedMSD [6, 78] in analogy to
equation (7)we find that

x t t D t t D t t t t

D
t

t

( , ) 2 ( ) ( ) ( ) ( ) d d

2 log 1 . (22)

a a
t

t t

t

t t

a

2

0 0
0

a

a

a

a

⎛
⎝⎜

⎞
⎠⎟

∫ ∫ ζ ζ

τ
τ

= ′ ′ ″ ″ ′ ″

= +
+

+ +

In the limit of strong ageing, t ta ≫ , this expression yields the linear scaling

x t t D
t

t
( , ) 2 . (23)a a

a

2
0 0τ≈

of theMSDwith time t, the ageing time ta rescaling the effective particle diffusivity. The transition between this
ageing-dominated linear scaling for theMSDand the anomalous logarithmic time dependence in theweak
ageing limit t ta≫ is clearly seen infigure 6.

For the aged time averagedMSD [6, 78]we obtain the result

t
t

x t x t t

D

t
t t t t t t

( , )
1

[ ( ) ( )] d

2
( ) ( ) ( ) ( ) , (24)

a a
t

t t

a a a a

2 2

0 0

a

a

⎡⎣ ⎤⎦

∫δ Δ
Δ

Δ

τ
Δ

ℓ ℓ Δ ℓ Δ ℓ

=
−

′ + − ′ ′

=
−

+ − + − + − +

Δ− +

where the auxiliary function t( )ℓ was defined in equation (14). In the limit t0τ Δ≪ ≪ and taΔ ≪ the aged
time averagedMSD factories into a term containing all the information on the ageing andmeasurement times ta
and t, and another capturing the physically relevant dependence on the lag timeΔ and themeasurement time t

Figure 5.Distribution ( )ϕ ξ of the amplitude scatter of the time averagedMSD. The dashed lines show thefit of the simulations data
with the function a b( ) exp( )exp( )ϕ ξ ξ ξ∝ − − .

10
For confined fractional Langevin equationmotion, a transient ageing dependence exists [77].
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t D
t

t

t
( , ) 2 log 1 . (25)a a

a

2
0 0

⎛
⎝⎜

⎞
⎠⎟δ Δ τ Δ∼ +

This factorization is analogous to that of heterogeneous diffusion processes [83], scale-free subdiffusive
continuous time randomwalks [78], and standard SBM[63].However, in contrast to these processes the aged
time averagedMSD for short lag times does not factorize into the product of the non-aged time averagedMSD
(16) and a factor containing the ageing time.

For strong ageing t ta ≫ we obtain the linear scaling

t D
t

( , ) 2 . (26)a a
a

2
0 0δ Δ τ Δ∼

In this limit, that is, the systembecomes apparently ergodic andweobserve the equality
t x t( , ) ( , )a a a a

2 2δ Δ Δ〈 〉 = 〈 〉, as canbe seen fromcomparisonwith equations (23) and (26). Figure 7 shows the
convergence of the time averagedMSD to the limiting behaviour (26). Such abehaviourwas previouslyobserved for
aged subdiffusive SBM[63], heterogeneous diffusionprocesses [83], and continuous time randomwalk processes
[78]. In the case ofUSBMthisphenomenahas a clear physical explanation: at the beginning of the experiment the
diffusioncoefficientD(t) significantlydecreases during themeasurement time t 0τ≫ from D D(0) 0= to
D t D t( ) 0 0τ∼ , and the system is stronglynon-stationary. In contrast, after a long ageing period t ta ≫ the
diffusioncoefficient remains practically unchangedduring themeasurement time, D t t D t D t( ) ( )a a a0 0τ+ ≃ = .

Figure 6.Ensemble and time averagedMSDs x t t( , )a a
2〈 〉 and ( )a

2δ Δ〈 〉 for ageingUSBM.Themeasurement time is t 9 104= × and
the ageing timewas chosen as t 10a

4= . Symbols: simulations results. Lines: theoretical results of equations (22) and (24).

Figure 7.Time averagedMSD a
2δ〈 〉 versus ageing time ta. The analytical results (25) and (26) are shown by the dashed lines, while the

symbols correspond to the results of simulations. Parameters:measurement time t 103= and lag time 10Δ = .
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Figure 7 explicitly shows how the amplitude of the time averagedMSD is reduced due to ageing in the
system.Howdo the fluctuations of individual time averagedMSD traces change in the presence of ageing? The
derivation of the ergodicity breaking parameter for the aged process is provided in the appendix. The final result
in the limit tΔ ≪ and taΔ ≪ assumes the form

t t

t t t t t
EB

4

3 ( 1 )log ( 1 )
. (27)a

a

a a a
2

Δ
∼

+ +

In the strong ageing limit t ta ≫ the ergodicity breaking parameter EBa is independent of the ageing time ta, and
it asymptotically converges to the result (19) of Brownian diffusion.Our theoretical results agreewell with the
simulations, as witnessed by figure 8. Forweak ageing t t,a Δ≪ the result (20) of the non-agedUSBMprocess is
recovered.

3. ConfinedUSBM

Themotion of particles in external confinement is an important physical concept for applications of stochastic
processes, and it is also relevant from an experimental point of view.Namely, themotion of particles in cellsmay
repeatedly hit the cell wall, or the tracer particlesmay experience a restoring force in particle tracing experiments
by help of optical tweezers. Herewe consider the generic case of confinement in an harmonic potential. USBM in
the presence of such a linear restoring force is governed by the overdamped Langevin equationwith additional
Hookean force term kx− ,

x

t
D t t kx

d

d
2 ( ) ( ) . (28)ζ= × −

3.1. Ensemble and time averagedmean squared displacements
The ensemble averagedMSD follows directly from this stochastic equation, andwe obtain

x t D t( ) 2 ( ). (29)2
0 0 0τ τ= ℰ +

Herewe defined the auxiliary function

( )

z
y

y
y

kz kz

( ) e
exp( )

d

e Ei(2 ) Ei( 2 ) (30)

kz

kz

kz

k z z

2

2

2

2
0

0

0 ⎡⎣ ⎤⎦

∫ℰ =
−

= −

−

− +

Figure 8.Ergodicity breaking parameter EBa normalized by the Brownian value EBBM (19) as function of ageing time ta. The dashed
lines correspond to the analytical result (27), while the symbols are the results of simulations. Parameters are the same as in figure 7.
For strong ageing, t ta ≫ , EBa does not depend on ta and approaches EBBM (19).
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where in the second line we used the definition of the exponential integral

z
y

y
yEi( )

exp( )
d . (31)

z
∫= −

−
−

∞

The asymptotic behaviour of theMSD for long times t k1≫ has the time dependence

x t
D

kt
( ) . (32)2 0 0τ

∼

Reflecting the temporal decay of the temperature encoded in the time dependent diffusion coefficient (5)we
observe the t1 scaling of theMSD in confinement. This underlines the highly non-stationary and athermal
character of this process [60, 62, 63].

The time averagedMSD for confinedUSBM is obtained from the relation

t
x t x t x t x t t( )

1
( ) 2 ( ) ( ) ( ) d . (33)

t
2

0

2 2⎡⎣ ⎤⎦∫δ Δ
Δ

Δ Δ=
−

′ + − ′ ′ + + ′ ′
Δ−

The covariance of the position for ultraslow SBM in confinement can no longer be simplified according to
equation (12) but has the time dependence

( )x t x t D t( ) ( ) 2 e ( ). (34)k t t
1 2 0 0 0 1

2 1τ τ= ℰ +− −

Introducing relations (29) and (34) into equation (33)we obtain

( )

D

t k

t
t

t
t

( )
( )

log ( )

1 2e log 1 ( )

( ) . (35)

k

2 0 0 0

0
0

0
0

0

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫⎬⎭

δ Δ
τ
Δ

τ
Δ τ

τ

Δ
τ

Δ τ

Δ τ

=
−

+
+

− ℰ +

+ − + − − ℰ − +

+ ℰ +

Δ−

For long times and strong external confinement, { } { }t t k, , 1 ,a 0Δ τ≫ this expression simplifies to

D

kt t

t
( ) 2 1 log log . (36)2 0 0

0 0

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥δ Δ

τ Δ
τ

Δ
τ

∼ + −

The time averagedMSDhas a pronounced plateau for t t, aΔ ≪ ,

D

kt

t
( )

2
log , (37)2 0 0

0

⎛
⎝⎜

⎞
⎠⎟δ Δ

τ
τ

∼

that is, in this regime the time averagedMSD is independent of the lag time, compare the discussion in references
[62, 63]. Simulations based on the Langevin equationwith theHookean forcing are in excellent agreement with
these analytical results, as shown infigure 9.

3.2. AgeingUSBM in confinement
3.2.1. Ensemble averagedmean squared displacement
For confined ageingUSBM, inwhichwemeasure theMSD starting from the ageing time ta until time t, the result
for theMSDbecomes

x t t x t t x t

x t t x t x t t x t

D t t t t

( , ) ( ) ( )

( ) ( ) 2 ( ) ( )

2 ( ) ( ) 2e ( ) , (38)

a a a a

a a a a

a a
kt

a

2 2

2 2

0 0 0 0 0

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦τ τ τ τ

= + −

= + + − +

= ℰ + + ℰ + + − ℰ +−

where x( )ℰ is defined in equation (30). Expression (38) reduces to equation (29) for vanishing ageing, ta=0.
However, even in the presence of weak ageing, t k1a ≪ , at long times t k1≫ the behaviour of theMSD reads

x t t D
t D

kt
( , ) 2 log 1 . (39)a a

a2
0 0

0

0 0
⎛
⎝⎜

⎞
⎠⎟τ

τ
τ

∼ + +

contrasting the behaviour in equation (32). The ensemble averagedMSD for ageingUSBMat different ageing
times is depicted infigure 10. At short times t k1< theweakly agedMSD follows the non-aged behaviour.
Eventually it attains the plateau given by the first term in equation (39), instead of decaying towards zero as in the
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non-aged case. In the analysis of experimental data times the exactmoment of the systemʼs initiationmay often
not be known, for instance, whenmeasuring biological cells. The apparent plateau revealed here for confined
ageingUSBMdynamicsmay thus erroneously bemistaken as a signature of a stationary process.

Expanding the exponential integral in equation (38), in the strong ageing limit t k{ , 1 }a 0τ≫ we find

x t t
D

kt t t
( , ) 1

1

1
2e . (40)a a

a a

kt2 0 0
⎛
⎝⎜

⎞
⎠⎟

τ
∼ +

+
− −

For t k1≪ we recover the unconfined result (23). In the opposite limit t k1≫ the behaviour of equation (40)
crosses over to

x t t
D

k t t t
( , )

1 1
. (41)a a

a a

2 0 0
⎛
⎝⎜

⎞
⎠⎟

τ
∼ +

+

In this case we recover a transition between two plateaus, as it was observed for subdiffusive SBM [63]. Namely,
for shortmeasurement times t ta≪ wefind from result (41) that

Figure 9.Ensemble and time averagedMSDs x t( )2〈 〉 and ( )2δ Δ〈 〉 for confinedUSBM.The black line represents the analytical result
(29), while the blue line denotes equation (35). The red line shows the asymptotic behaviour (36), and the horizontal dashed line the
leading term (37). The symbols correspond to the simulations of equation (28).

Figure 10.Ensemble averagedMSD x t t( , )a a
2〈 〉 for confined ageingUSBMat different ageing times: ta=0 (no ageing, black line),

ta=0.1 (weak ageing, red line), and t 10a
5= (strong ageing, blue line). Note that for better visibility the curve for t 10a

5= was
multiplied by a factor of 103.
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x t t
D

kt
( , )

2
, (42)a a

a

2 0 0τ
∼

while at longmeasurement times t ta≫ this turns to

x t t
D

kt
( , ) . (43)a a

a

2 0 0τ
∼

This behaviour, which appears unique forUSBMand SBM, is depicted infigure 10.

3.2.2. Time averagedmean squared displacement
The time averagedMSD for ageing confinedUSBM is derived analogously to the non-aged case, yielding

( )t
D

t k

t

t

t t t

t t

t

t t t

( , )
( )

1 2e log 1

( ) ( )

log

( ) ( ) . (44)
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a a
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In the limit of strong confinement { }k t t1 , ,a Δ≪ this expression can be significantly simplified to obtain

t
D

k t

t t

t

t

t
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( )
log log 1 . (45)a a

a
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For t t, aΔ ≪ we again find an apparent plateau

t
D

kt

t

t t
( , )

2
log 1 . (46)a a

a

2 0 0
⎛
⎝⎜

⎞
⎠⎟δ Δ

τ
∼ +

+

In the case of strong ageing t ta ≫ wefind

t
D

kt
( , )

2
. (47)a a

a

2 0 0δ Δ
τ

∼

Comparison to equation (42) shows that the time averagedMSDbecomes equal to the ensembleMSD in this
strong ageing regime, and ergodicity is apparently restored as in the unconfined case. The behaviour of the
ensemble and time averagedMSDs for confined ageingUSBMare depicted infigure 11.

The ergodicity breaking parameter EB for confinedUSBM is depicted infigure 12 for both absence and
presence of ageing. It is a decreasing function of the ratio t Δ for large t Δ, while at small values of t Δ it remains
practically unchanged.

4. Conclusions

Weproposed and studiedUSBM, a new anomalous stochastic process with a time dependent diffusion
coefficient of the form D t t( ) 1≃ . FormallyUSBMcorresponds to the lower bound 0α = of scaled Brownian
motionwith diffusivity D t t( ) 1≃ α− (0 α< ) [59–63], yet its dynamical behaviour is significantly different.We
showed thatUSBMyields a logarithmic time dependence of theMSD rather than the power-law scaling of SBM.
USBMʼs time averagedMSDwas shown to acquire a combination of power-law and logarithmic lag time
dependence. USBM isweakly non-ergodic and ageing. The ergodicity breaking parameter quantifying the
random character of time averages of theMSDhas aweak logarithmic dependence on the ratio tΔ of lag timeΔ
and length t of the recorded trajectories, tending to zero in the limit of infinitely long traces and/or short lag
times. In the case of strong ageing the system tends to usual Brownianmotion and the behaviour of the system
becomes apparently ergodic. Under external confinement the behaviour of theUSBMdynamics exhibits an
apparent plateau for the time averagedMSD,while the ensemble averagedMSDdecays proportionally to t1 at
longer times, reflecting the highly non-stationary character ofUSBM.Ageing produces an apparent plateau for
the ensemble averagedMSDand a crossover between two plateaus for the time averagedMSD.USBMadds to
the rich variety of ultraslowprocesses with logarithmic growth of the ensemble averagedMSDyet displays
several unique features in comparison to other ultraslow processes.
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Potential applications ofUSBMare foremost in the description of randomparticlemotion in intrinsically
non-equilibrium system such as free cooling granular gases or systems coupled to explicitly time dependent
thermal reservoirs. On amore general level we hope that the discussion of ultraslowprocesses will lead to a
rethinking of claims in diffusion studies that certain particles appear immobile. Namely, one often observes a
population splitting into a (growing) fraction of immobile particles and another fraction of particles performing
anomalous diffusion of the form (1) [84]. Ageing continuous time randomwalks [78] or heterogeneous
diffusion processes [28, 83] give rise to such a behaviour. However, given the tools provided here on ultraslow
diffusion itmight be worthwhile checkingwhether the observed ‘immobile’ particlesmay in fact perform
logarithmically slow diffusion.
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Figure 11.Ensemble and time averagedMSDs x t t( , )a a
2〈 〉 and ( )a

2δ Δ〈 〉 for confined ageingUSBM. The symbols depict simulations of
equation (28) for the trace length t=104 . The blue line corresponds to the theoretical result (44), and the red line shows the asymptotic
(45). The horizontal dashed line shows the leading term (46).

Figure 12.Ergodicity breaking parameter EB as function of t Δ in the non-aged (ta=0) and aged (ta=3000) cases.
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Appendix. Derivation of the ergodicity breaking parameter

The ergodicity breaking parameter (17) requires the fourth ordermoment

( ) ( )
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x t x t

x t x t t t
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( ) ( ) d d . (A.1)
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+ −

× + −

Δ Δ− −

Using Isserlis’ orWickʼs theorem forGaussian processes the integrand can be rewritten in the form

( ) ( )

( ) ( )
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x t x t x t x t
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The numerator in equation (17)may thus be represented as
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Taking into account relation (12) and the symmetry of expression (A.3) with respect to t1 and t2, we get
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The integrand is non-zero only if t t1 2Δ+ > . Introducing the new variable t t2 1τ = − and changing the order
of integration, we arrive at the following expression
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Introducing theMSD (7) and changing the variable t t1 0 1τ+ → , we obtain
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Let us consider the case t0τ Δ≪ ≪ . Introducing the variables x t1 Δ= and y τ Δ= and changing the upper
limit of integration to infinity and the lower limit to zero in the inner integral, we get
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−
Here the constantC is given by

C
x

x y
x ylog

1
d d

6
1 0.645. (A.8)

0

1

0

2
2⎛

⎝⎜
⎞
⎠⎟∫ ∫ π= +

+
= − ≃

∞

Dividing  by ( )2 2δ Δ〈 〉 from equation (16)we recover thefinal expression (20) for the ergodicity breaking
parameter.

In the case of ageing
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The derivation is similar to the non-aged case
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Expanding the integrand for t t 1a1 > ≫ , we get

t

t t
log . (A.11)2 1

1 1

2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Δ
τ

Δ τ+
+

≃ −

Evaluating the integral for ta Δ≫ , t Δ≫ , we obtain
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and the ergodicity breaking parameter EB ( )a Δ is then given by equation (27).
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