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We study generalized fractional Langevin equations in the presence of a harmonic
potential. General expressions for the mean velocity and particle displacement, the
mean squared displacement, position and velocity correlation functions, as well as
normalized displacement correlation function are derived. We report exact results for
the cases of internal and external friction, that is, when the driving noise is either
internal and thus the fluctuation-dissipation relation is fulfilled or when the noise
is external. The asymptotic behavior of the generalized stochastic oscillator is in-
vestigated, and the case of high viscous damping (overdamped limit) is considered.
Additional behaviors of the normalized displacement correlation functions different
from those for the regular damped harmonic oscillator are observed. In addition,
the cases of a constant external force and the force free case are obtained. The
validity of the generalized Einstein relation for this process is discussed. The con-
sidered fractional generalized Langevin equation may be used to model anomalous
diffusive processes including single file-type diffusion. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4863478]

I. INTRODUCTION

Anomalous diffusion characterizes deviations from the linear scaling with time found for the
mean squared displacement (MSD) 〈x2(t)〉 � t of normal Brownian motion. In particular, we are
interested in power-law forms 〈x2(t)〉 � tα separating subdiffusion (0 < α < 1) and superdiffusion (α
> 1).44 Anomalous diffusion has been found in various physical systems.20, 26–28, 33, 56, 57, 61, 67 Several
stochastic approaches to anomalous diffusion exist. We mention the generalized Langevin equation
(GLE),4, 22, 33, 39, 48, 53 that came to fame following Kubo’s work34 and the related fractional Brownian
motion (FBM), originally introduced by Kolmogorov and popularized by Mandelbrot.32, 41 The
fractional Langevin equation was further generalized in terms of more complex kernels.14, 17, 37, 51

Mainardi and Pironi40 introduced a fractional Langevin equation as a particular case of a GLE,
and for the first time represented the velocity and displacement correlation functions in terms of
Mittag-Leffler (M-L) functions. Furthermore, fractional Langevin equation of distributed order15 has
been used to model single file diffusion and ultraslow diffusion. In our previous work,51 we derived
general expressions for variances and MSD for fractional GLEs (FGLEs) for a free particle driven by
an arbitrary internal noise, we used a three parameter M-L frictional memory kernel and discussed its
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application to model anomalous diffusive processes in complex media including phenomena similar
to single file diffusion or possible generalizations thereof. Recently, Eab and Lim16 considered multi-
fractional Langevin-type stochastic differential equations driven by single or multiple fractional
Gaussian noise terms to describe retarded and accelerated anomalous diffusion. A different family
of dynamic processes are described by the fractional Fokker-Planck equation36, 43, 44, 63 and the
generalized Chapman-Kolmogorov equation.42 The fractional Fokker-Planck equation corresponds
to the diffusion limit of subdiffusive continuous time random walks,56 which have a finite variance
of jump lengths and a broad distribution of waiting times τ of the form ψ(τ ) � (τ*)α/τ 1 + α , with 0
< α < 1 such that no mean waiting time exists43, 44 (see also Ref. 50). While processes governed by
the fractional Langevin equation and fractional Brownian motion reach ergodicity algebraically at
sufficiently long times,11, 29 subdiffusive continuous time random walks and fractional Fokker-Planck
equations lead to weak ergodicity breaking such that long time and ensemble averaged observables
are no longer equivalent,3, 5, 25 and the process ages.2, 46, 58 Superdiffusive continuous time random
walks, the Lévy walks, exhibit an ultraweak ergodicity breaking.18, 19 Furthermore, diffusion with
space-dependent diffusion coefficients is weakly non-ergodic.10

Anomalous diffusion of a particle of unit mass m = 1 driven by a stationary random force ξ (t)
may be described in terms of the GLE:34, 40, 69

ẍ(t) +
∫ t

0
γ (t − t ′)ẋ(t ′)dt ′ + dV (x)

dx
= ξ (t), ẋ(t) = v(t), (1)

where v(t) is the velocity at time t > 0, x(t) is the particle displacement, and γ (t) is the frictional
memory kernel. F(x) = − dV (x)

dx is an external force with potential V (x) acting on the particle. The
noise ξ (t) is of a zero-mean (〈ξ (t)〉 = 0), and possesses the correlation function

〈ξ (t)ξ (t ′)〉 = C(t ′ − t). (2)

In cases when the system reaches an equilibrium state, i.e., when the noise is internal, the correlation
function C must be related to the frictional memory kernel via the second fluctuation-dissipation
theorem34, 40, 69 in the following way,

C(t) = kB T γ (t), (3)

where kB is the Boltzmann constant and T is the absolute temperature of the heat bath. In this case,
the fluctuation and dissipation relate to the same source. The frictional memory kernel satisfies the
assumption limt→∞ γ (t) = lims→0 sγ̂ (s) = 0,13 where γ̂ (s) = L[γ (t)](s) is the Laplace transform
of γ (t). In the case when the fluctuation and dissipation do not originate from a same source,
the second fluctuation-dissipation theorem (3) does not hold. We then speak of external noise.
We note that for a white Gaussian noise ξ (t), the GLE (1) corresponds to the regular Langevin
equation.35, 40, 69 Different forms of the memory kernel have been used in order to model anomalous
diffusive processes, such as power-law correlation functions,4, 13, 39, 40, 64, 66 and different forms of
M-L correlation functions.6, 51, 52, 54, 65

In this paper, we investigate anomalous diffusion in terms of the correlation functions of
the FGLE for a harmonic oscillator, i.e., for the external force field F(x) = − ω2x(t). These FGLEs
generalize the form (1) by substituting the integer derivatives through by fractional order derivatives.
In the work of Fa17 a FGLE with nonlocal dissipative force was investigated. Such FGLEs were
recently used by Lim and Teo,37 Eab and Lim,14 Sandev, Metzler, and Tomovski51 to model a
single file-type diffusion and generalized diffusion processes. In what follows, apart from the linear
Hookean force we also obtain results for a free particle V (x) = 0 and a constant external force F(x)
= Fθ (t), where F is a constant and θ (t) is the Heaviside step function. In particular, we consider the
role of the Einstein relation in such phenomena.

The paper is organized as follows. In Sec. II, we formulate the FGLE, determine its relaxation
function, and derive the correlation functions. Detail analysis of the normalized displacement cor-
relation function, which is a experimentally measured quantity, is done. Additional behaviors to the
overdamped and underdamped motion of regular damped oscillator are observed. In Sec. III, we
turn to a constant external force and investigate the generalized Einstein relation. Finally, we draw
our conclusions in Sec. IV.
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II. FGLE FOR A HARMONIC OSCILLATOR

We study the following FGLE,

C Dμ

0+v(t) +
∫ t

0
γ (t − t ′)v(t ′)dt ′ + dV (x)

dx
= ξ (t), C Dν

0+x(t) = v(t), (4)

for a harmonic oscillator with external potential V (x) = ω2x2/2, where x is the particle position and
v its velocity. The parameters are taken such that 0 < μ ≤ 1 and 0 < ν ≤ 1. We call γ (t) the memory
kernel. Finally, ξ (t) is the (internal) noise with zero mean, for which relation (2) is satisfied. We note
that μ+ ν > 1 needs to be fulfilled.51

The operator

(
C Dγ

0+ f
)

(t) =
(

I (n−γ )
0+

dn

dtn
f

)
(t), n = [	(γ )] + 1 (5)

is the Caputo time fractional derivative8 of order γ (n − 1 < γ ≤ n, n ∈ N), with a Laplace transform

L
[

C Dγ

0+ f (t)
]

(s) = sγL [ f (t)] (s) −
n−1∑
k=0

f (k)(0+)sγ−1−k (6)

and (
I γ

0+ f
)

(t) = 1


(γ )

∫ t

0

f (t ′)
(t − t ′)1−γ

dt ′, t > 0, 	(γ ) > 0 (7)

is the Riemann-Liouville (R-L) fractional integral of order γ > 0,26, 30 with properties
(
I 0
0+ f

)
(t) =

f (t), and I γ

0+ I δ
0+ = I δ

0+ I γ

0+ = I γ+δ

0+ , γ > 0, δ > 0, and Laplace transform given by

L
[
I γ

0+ f (t)
]

(s) = L [ f (t)] (s)

sγ
. (8)

For convenience, we here introduced the Riemann-Liouville fractional derivative(
RL Dγ

0+ f
)

(t) = dn

dtn

(
I (n−γ )
0+ f

)
(t) (9)

of order γ ,26, 30 which Laplace transform is given by

L
[

RL Dγ

0+ f (t)
]

(s) = sγL [ f (t)] (s) −
n−1∑
k=0

dk

dt k

(
I n−γ

0+ f
)

(0+)sn−1−k . (10)

R-L fractional derivative is a left inverse of R-L fractional integral RL Dγ

0+ I γ

0+ f (t) = f (t). Moreover,

RL Dδ
0+ I γ

0+ f (t) = I γ−δ

0+ f (t). Note that if we consider proper initial conditions (zero initial values)
the R-L and Caputo fractional derivatives are equivalent since26, 30

(
RL Dγ

0+ f
)

(t) = (
C Dγ

0+ f
)

(t) +
n−1∑
k=0

t k−γ


(k − γ + 1)
f (k)(0+). (11)

Thus, in such cases the properties of R-L fractional derivative can be used for the Caputo fractional
derivative. For the R-L fractional integral and Caputo fractional derivative the following relation
holds true30

I γ

0+C Dγ

0+ f (t) = f (t) −
n−1∑
k=0

f (k)(0+)
t k

k!
, n − 1 < γ ≤ n. (12)

Particularly, for 0 < γ ≤ 1 it is obtained I γ

0+C Dγ

0+ f (t) = f (t) − f (0+).
FGLE (4) contains a number of limiting cases. Thus, the case for a free particle ω = 0 was

introduced by Lim and Teo37 to model single file diffusion. The case ν = 1 is investigated by Fa,17

and analyzed by Eab and Lim14 in case of ω = 0 in the presence of an external force and different
forms of the friction kernel. In Ref. 51, we derived the correlation function of the FGLE (4) for a
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free particle (ω = 0). For μ = ν = 1 it yields the GLE for an arbitrary frictional memory kernel,
which as a special case contains the fractional Langevin equation for anomalous diffusive processes,
and classical Langevin equation for a standard Brownian motion. The particular case μ = ν, ω =
0, and γ (t) = γ δ(t) was introduced by Kobelev and Romanov31 to describe anomalous diffusion.
Thus, our goal is to find general expressions of variances for this generalized model, which is not
done elsewhere, for an arbitrary frictional memory kernel γ (t) in case where the second fluctuation-
dissipation theorem is satisfied. Additionally, we will investigate a FGLE in presence of an external
constant force and we will discuss the validity of the generalized Einstein relation.

The fractional version of the generalized Langevin equation contains non-integer derivatives
of physical quantities. Let us briefly motivate this choice. We start by noting that such fractional
derivatives also occur, when we derive the dynamic equation for the continuous time random walk
model with scale-free distribution of waiting times. While locally the process is well-defined,
the generalized central limit theorem enforces the convergence to stable laws. In the context of the
continuous time random walk subdiffusion, this means, for instance, that the Fokker-Planck equation
acquires a fractional derivative (see, e.g., Metzler and Klafter44), and physical relations such as
〈v(t)〉 = d

dt 〈x(t)〉 become fractional. Such equations are therefore valid on some mesoscopic level,
on which averages over the physical observables already took place. Compared to experiments, the
theory has been shown to represent an excellent quantitative description of the observed phenomena.

In the case of the generalized Langevin equation, we similarly view the variables to represent a
mesoscopic description of the process. The expectation values of observables calculated from this
theory then describe the dynamic behavior after averaging over the disorder of the system.

In addition to the numerous aforementioned special cases of FGLE (4), and the previous
comment on the physical motivation to investigate FGLE (4), we further analyze and transform
Eq. (4) in a more suitable form. If we apply the R-L fractional integral to Eq. (4), from relation (12),
we obtain

v(t) − v0 + I μ

0+

[∫ t

0
γ (t − t ′)v(t ′)dt ′ + ω2x(t)

]
= I μ

0+ξ (t), (13)

where v(0+) = v0. Thus, the first time derivative to (13) yields

v̇(t) + RL D1−μ

0+

[∫ t

0
γ (t − t ′)v(t ′)dt ′

]
+ ω2

RL D1−μ

0+ x(t) = RL Dμ

0+ξ (t), (14)

where we use d
dt I μ

0+ f (t) = d
dt I 1−(1−μ)

0+ f (t) = RL D1−μ

0+ f (t). So, Eq. (14) can be considered as a GLE

for a particle on which acts generalized force −ω2
RL D1−μ

0+ x(t), and driven by noise ξ̄ (t) which is a

fractional derivative of the noise ξ (t), i.e., ξ̄ (t) = RL Dμ

0+ξ (t). The term RL D1−μ

0+
[∫ t

0 γ (t − t ′)v(t ′)dt ′
]

can be considered as a term which represents the memory effects of the complex environment on
particle movement. In a same way, instead of defining velocity as a first time derivative of the
displacement ẋ(t) = v(t), it is used that C Dν

0+x(t) = v(t), thus, it is not clear what does it represent.
By applying the R-L fractional integral as previously, we obtain

x(t) − x0 = I ν
0+v(t) = 1


(ν)

∫ t

0

v(t ′)
(t − t ′)1−ν

dt ′, (15)

where x(0 +) = x0. Relation (15) means, as it was discussed by Kobelev and Romanov,31 that the
displacement is defined by the velocity only in the points within time interval of dimension ν, and
is characteristic for a microscopic motion of a particle on a nondifferentiable curve. In such cases
of fractal trajectories, some of the instant velocities and displacements do not contribute to the
macroscopic motion, and thus anomalous diffusion occurs.31 Application of fractional derivatives
in the fractional Langevin equation is discussed by West68 in the description of dynamics of fractal
time series, to describe the evolution of a fractal statistical processes.
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A. Relaxation functions

The Laplace transform of (4) becomes

X̂ (s) = x0

s

[
1 − ω2Ĝ(s)

] + v0sμ+ν−1 Î (s) + Ĝ(s)F̂(s), (16a)

V̂ (s) = v0sμ+ν−1Ĝ(s) − ω2x0sν−1Ĝ(s) + sν Ĝ(s)F̂(s), (16b)

where X̂ (s) = L[x(t)](s) = ∫ ∞
0 exp(−st)x(t)dt is the Laplace transform of x(t), and analogously

for the other quantities, x0 = x(0 +) and v0 = v(0+). The Laplace transform of the abbreviation G
is thereby given by

Ĝ(s) = 1

sμ+ν + sν γ̂ (s) + ω2
(17a)

and we introduce the following functions

ĝ(s) = sν Ĝ(s) = sν

sμ+ν + sν γ̂ (s) + ω2
, (17b)

Î (s) = s−ν Ĝ(s) = s−ν

sμ+ν + sν γ̂ (s) + ω2
. (17c)

From inverse Laplace transform of relations (16a) and (16b), we obtain the particle position and
velocity,

x(t) = 〈x(t)〉 +
∫ t

0
G(t − t ′)ξ (t ′)dt ′, (18a)

v(t) = 〈v(t)〉 +
∫ t

0
g(t − t ′)ξ (t ′)dt ′, (18b)

where

〈x(t)〉 = x0
[
1 − ω2 I 1

0+G(t)
] + v0 · C Dμ+ν−1

0+ I (t), 〈v(t)〉 = v0 · C Dμ+ν−1
0+ G(t) − ω2x0 I 1−ν

0+ G(t)

(19)

are the noise-averaged (deterministic) particle displacement and velocity. The functions I(t), G(t)
(with G(0) = 0), and g(t) are known as relaxation functions, and we will use them to analyze the
correlation functions. Relaxation functions depend on frictional memory kernel γ (t) and determine
the relaxation law for particular process described by Eq. (4). As special cases one finds

〈x(t)〉 = x0
[
1 − ω2 I 1

0+G(t)
] + v0G(t), 〈v(t)〉 = v0g(t) − ω2x0 I 1−ν

0+ G(t), μ = 1, 0 < ν < 1,

(20a)

〈x(t)〉 = x0
[
1 − ω2 I (t)

] + v0 · C Dμ

0+ I (t), 〈v(t)〉 = v0 · C Dμ

0+G(t) − ω2x0G(t), ν = 1, 0 < μ < 1,

(20b)

〈x(t)〉 = x0
[
1 − ω2 I (t)

] + v0G(t), 〈v(t)〉 = v0g(t) − ω2x0G(t), μ = ν = 1. (20c)

B. Correlation functions

From relations (18a) and (18b), in case of an internal noise, we obtain the following general
formulas for the position autocorrelation

σxx = 〈x2(t)〉 − 〈x(t)〉2 = 2
∫ t

0
dt1G(t1)

∫ t1

0
dt2G(t2)C(t1 − t2)

= 2kB T

[∫ t

0
dξG(ξ )

ξν−1


(ν)
− ω2

∫ t

0
dξ I (ξ )C Dν

0+ I (ξ ) −
∫ t

0
dξG(ξ )C Dμ

0+G(ξ )

]
, (21a)
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the position-velocity cross-correlation

σxv = 〈(v(t) − 〈v(t)〉) (x(t) − 〈x(t)〉)〉 =
∫ t

0
dt1g(t1)

∫ t

0
dt2G(t2)C(t1 − t2)

= kB T

[
1


(ν)

∫ t

0
dξg(ξ )ξν−1 −

∫ t

0
dξg(ξ )C Dμ

0+G(ξ ) −
∫ t

0
dξG(ξ )RL Dμ

0+g(ξ )

−ω2
∫ t

0
dξ

(
G2(ξ ) + g(ξ )I (ξ )

)]
, (21b)

and the velocity autocorrelation

σvv = 〈v2(t)〉 − 〈v(t)〉2 = 2
∫ t

0
dt1g(t1)

∫ t1

0
dt2g(t2)C(t1 − t2)

= −2kB T

[∫ t

0
dξg(ξ )RL Dμ

0+g(ξ ) + ω2
∫ t

0
dξG(ξ )C Dν

0+G(ξ )

]
, (21c)

where we apply the following formula13

〈F̂(s)F̂(s ′)〉 = kB T
γ (s)γ (s ′)

s + s ′ . (22)

In the special case μ = 1, 0 < ν < 1 we obtain

σxx = 2kB T

[∫ t

0
dξG(ξ )

ξν−1


(ν)
− 1

2
G2(t) − ω2

∫ t

0
dξ I (ξ )C Dν

0+ I (ξ )

]
, (23a)

σxv =
∫ t

0
dt1g(t1)

∫ t

0
dt2G(t2)C(t1 − t2)

= kB T

[
1


(ν)

∫ t

0
dξg(ξ )ξν−1 − g(t)G(t) − ω2

∫ t

0
dξ

(
G2(ξ ) + g(ξ )I (ξ )

)]
, (23b)

σvv = kB T

[
1 − g2(t) − 2ω2

∫ t

0
dξG(ξ )C Dν

0+G(ξ )

]
. (23c)

Note that for ν = 1, 0 < μ < 1 we recover the results obtained by Fa,17

σxx = 2kB T

[
I (t) −

∫ t

0
dξG(ξ )C Dμ

0+G(ξ ) − ω2

2
I 2(t)

]
, (24a)

σxv = 1

2

dσxx

dt
= kB T G(t)

[
1 − C Dμ

0+G(t) − ω2 I (t)
]
, (24b)

σvv = −2kB T

[∫ t

0
dξg(ξ )RL Dμ

0+g(ξ ) + ω2

2
G2(t)

]
. (24c)

Finally, the case μ = ν = 1 yields the well known result13, 64, 66

σxx = kB T
[
2I (t) − G2(t) − ω2 I 2(t)

]
, (25a)

σxv = kB T G(t)
[
1 − g(t) − ω2 I (t)

]
, (25b)

σvv = kB T
[
1 − g2(t) − ω2G2(t)

]
. (25c)
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From the mean particle displacement (19) and variance (21a) we obtain the MSD and time-
dependent diffusion coefficient D(t) = 1

2
d
dt 〈x2(t)〉,40, 48, 54 respectively,

〈x2(t)〉 = x2
0 + 2x0v0C Dμ+ν−1

0+ I (t) + v2
0

[
C Dμ+ν−1

0+ I (t)
]2

− ω2x0 I 1
0+G(t)

[
2x0 − (

ω2x0 − 2v0
)

I 1
0+G(t)

]

+ 2kB T

[∫ t

0
dξG(ξ )

ξν−1


(ν)
−

∫ t

0
dξG(ξ )C Dμ

0+G(ξ ) − ω2
∫ t

0
dξ I (ξ )C Dν

0+ I (ξ )

]
, (26)

D(t) = x0v0C Dμ+ν

0+ I (t) + v2
0 C Dμ+ν−1

0+ I (t)C Dμ+ν

0+ I (t) − ω2x0C Dν
0+ I (t)

[
x0 − (

ω2x0 − 2v0
)

I 1
0+G(t)

]

+ kB T G(t)

[
tν−1


(ν)
− C Dμ

0+G(t) − ω2 I (t)

]
. (27)

Note that for ω = 0 we recover the results from Ref. 51.

C. Explicit results

We now consider explicit forms for the stochastic noise (internal and external), derive and
analyze the mean particle displacement and velocity, as well as the correlation functions. The
normalized displacement correlation function, defined through the two-point correlation function
〈x(t)x0〉, is investigated. Behaviors different than those for the regular damped oscillator are observed.

1. Cases of internal noise

Here, we will consider different frictional memory kernels (Dirac delta, exponential, power-law,
M-L type) and will analyze the MSD, in order to investigate the behavior of the oscillator, in cases
when the second fluctuation-dissipation theorem (3) holds. First, we will use Dirac delta frictional
memory kernel γ (t) = 2λδ(t), λ > 0 (i.e., γ̂ (s) = 2λ). From relations (17b), (17a), and (17c) we
obtain

g(t) = L−1

[
sν

sμ+ν + 2λsν + ω2

]
= L−1

[
sν

sμ+ν + 2λsν

1

1 + ω2

sμ+ν+2λsν

]

= L−1

[ ∞∑
n=0

(−ω2
)n s−νn

(sμ + 2λ)n+1

]

=
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)−ν−1 En+1
μ,(μ+ν)(n+1)−ν (−2λtμ) , (28a)

G(t) =
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)−1 En+1
μ,(μ+ν)(n+1) (−2λtμ) , (28b)

I (t) =
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)+ν−1 En+1
μ,(μ+ν)(n+1)+ν (−2λtμ) , (28c)

where

Eδ
α,β(z) =

∞∑
k=0

(δ)k


(αk + β)

zk

k!
, (29)

(R(α) > 0, β, δ, z ∈ C, (δ)k is the Pochhammer symbol) is the three parameter M-L function,49

which Laplace transform is given by49, 60

L
[
tβ−1 Eδ

α,β(ωtα)
]

(s) = sαδ−β

(sα − ω)δ
. (30)
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The convergence of these series in three parameter M-L functions can be shown by following the
procedure in Ref. 54. Moreover, detailed study of the convergence of series in three parameter M-L
functions in the complex plane is presented in Ref. 47. By using asymptotic expansion formula53, 55

Eδ
α,β (z) = (−z)−δ


(δ)

∞∑
n=0


(δ + n)


(β − α(δ + n))

z−n

n!
, |z| > 1, (31)

we find the relaxation functions in the long time limit t → ∞

g(t) = 1

2λt
Eν,0

(
−ω2

2λ
tν

)
, G(t) = tν

2λt
Eν,ν

(
−ω2

2λ
tν

)
, I (t) = t2ν

2λt
Eν,2ν

(
−ω2

2λ
tν

)
, (32)

where E1
α,β(z) = Eα,β(z) = ∑∞

k=0
zk


(αk+β) is the two parameter M-L function, and Eα, 1(z) = Eα(z)
is the one parameter M-L function. Note that from relation (31) for δ = 1, one can obtain the
asymptotic behavior of two parameter M-L function Eα,β (z) � − z−1


(β−α) for z → ∞, since Eα,β (z) =
−∑∞

n=0
z−(n+1)


(β−α(n+1)) = −∑∞
n=1

z−n


(β−αn) for |z| > 1, and for β = δ = 1—asymptotic behavior of one

parameter M-L function Eα(z) � − z−1


(1−α) for z → ∞, since Eα(z) = −∑∞
n=1

z−n


(1−αn) for |z| >

1.53, 55 In the short time limit (t → 0), the relaxation functions are as follows

g(t) = tμ−1 Eμ,μ (−2λtμ) , G(t) = tμ+ν−1 Eμ,μ+ν (−2λtμ) , I (t) = tμ+2ν−1 Eμ,μ+2ν (−2λtμ) .

(33)

From relations (28a)–(28c), also we can find the relaxation functions in case of a free particle (ω =
0), which are given by

g(t) = lim
ω→0

∞∑
n=0

(−ω2)nt (μ+ν)(n+1)−ν−1 En+1
μ,(μ+ν)(n+1)−ν (−2λtμ)

= tμ−1 Eμ,μ (−2λtμ) , (34a)

G(t) = tμ+ν−1 Eμ,μ+ν (−2λtμ) , (34b)

I (t) = tμ+2ν−1 Eμ,μ+2ν (−2λtμ) . (34c)

From relations (19)–(28c), by using the following formulas for three parameter

M-L function I γ

0+
[
tβ Eδ

α,β+1 (−atα)
]

= tβ+γ Eδ
α,β+γ+1 (−atα), and C Dγ

0+
[
tβ Eδ

α,β+1 (−atα)
]

=
tβ−γ Eδ

α,β−γ+1 (−atα), α > 0, β > 0, γ > 0, δ > 0, a is a constant,24, 30 the average particle
displacement and velocity become

〈x(t)〉 = x0

[
1 − ω2

∞∑
n=0

(−ω2)nt (μ+ν)(n+1) En+1
μ,(μ+ν)(n+1)+1 (−2λtμ)

]

+v0

∞∑
n=0

(−ω2)nt (μ+ν)n+ν En+1
μ,(μ+ν)n+ν+1 (−2λtμ) , (35a)

〈v(t)〉 = v0

∞∑
n=0

(−ω2)nt (μ+ν)n En+1
μ,(μ+ν)n+1 (−2λtμ) − ω2x0

∞∑
n=0

(−ω2)nt (μ+ν)n+μ En+1
μ,(μ+ν)n+μ+1 (−2λtμ) ,

(35b)

from where we find the asymptotic behaviors

〈x(t)〉 �

⎧⎪⎨
⎪⎩

x0

[
1 − ω2 tμ+ν


(1+μ+ν)

]
+ v0

[
tν


(1+ν) − 2λ tμ+ν


(1+μ+ν)

]
for t → 0,

x0 Eν

(
−ω2

2λ
tν

)
+ v0

2λ
tν−μ Eν,1+ν−μ

(
−ω2

2λ
tν

)
� x0

2λ
ω2

t−ν


(1−ν) + v0
t−μ


(1−μ) for t → ∞,

(36a)
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〈v(t)〉 �

⎧⎪⎨
⎪⎩

v0

[
1 − 2λ tμ


(1+μ)

]
− x0ω

2
[

tμ


(1+μ) − 2λ t2μ


(1+2μ)

]
for t → 0,

v0
2λ

t−μ Eν,1−μ

(
−ω2

2λ
tν

)
− x0ω

2

2λ
Eν

(
−ω2

2λ
tν

)
� v0

ω2
t−(μ+ν )


(1−(μ+ν)) − x0
t−ν


(1−ν) for t → ∞.

(36b)

Here, we used the relation Eα,β (z) = zEα,α+β (z) + 1

(β) .

24, 30 Here, we note that same results as
asymptotic behaviors (36a) and (36b) can be obtained by using Tauberian theorems.21 For example,
for the mean particle displacement 〈x(t)〉 in the long time limit t → ∞, where according to the
Tauberian theorem we analyze the behavior of the Laplace transformL [〈x(t)〉] = x0

s

[
1 − ω2Ĝ(s)

] +
v0sμ−1Ĝ(s) for s → 0, we obtain

〈x(t)〉 = L−1

[
x0

s

(
1 − ω2

sμ+ν + 2λsν + ω2

)
+ v0

sμ−1

sμ+ν + 2λsν + ω2

]

� L−1

[
x0

s

(
1 − ω2

2λsν + ω2

)
+ v0

sμ−1

2λsν + ω2

]

= L−1

[
x0

sν−1

sν + ω2

2λ

+ v0

2λ

sμ−1

sν + ω2

2λ

]
= x0 Eν

(
−ω2

2λ
tν

)
+ v0

2λ
tν−μEν,1+ν−μ

(
−ω2

2λ
tν

)
.

(37)

Similarly, for the short time limit t → 0, i.e., according to the Tauberian theorem, when we analyze
the behavior of L [〈x(t)〉] = x0

s

[
1 − ω2Ĝ(s)

] + v0sμ−1Ĝ(s) for s → ∞, we obtain

〈x(t)〉 � L−1

[
x0

s

(
1 − ω2

sμ+ν + 2λsν

)
+ v0

sμ−1

sμ+ν + 2λsν

]

= x0
[
1 − ω2tμ+ν Eμ,μ+ν+1 (−2λtμ)

] + v0tν Eμ,ν+1 (−2λtμ)

� x0

[
1 − ω2 tμ+ν


(1 + μ + ν)

]
+ v0

[
tν


(1 + ν)
− 2λ

tμ+ν


(1 + μ + ν)

]
. (38)

Graphical representation of the mean particle displacement and velocity for x0 = 0 and v0 = 1,
for different values of parameters, by using program package MATHEMATICA and series ex-
pansion of three parameter M-L function (29), is given in Figure 1. For the plots we use the
first 100 terms from the series (35a) and (35b), and first 100 terms from the series expansion
of three parameter M-L function, which was shown that are enough for graphical representation.
The obtained plots were reproduced with much more terms from the series (35a) and (35b), and
much more terms from the series expansion of three parameter M-L function. The force free case
(ω = 0) gives 〈x(t)〉 = v0tν Eμ,ν+1 (−2λtμ) and 〈v(t)〉 = v0 Eμ (−2λtμ), which for μ = ν = 1
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0.8
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t

FIG. 1. Graphical representation of: (a) mean particle displacement (35a), (b) mean velocity (35b) for v0 = 1, x0 = 0, and
Dirac delta frictional memory kernel. Parameters are as follows: μ = ν = 3/4, λ = 1; ω = 1/4 (solid line), ω = 1/2 (dashed
line); ω = 3/4 (dotted-dashed line); ω = 1 (dotted line).
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FIG. 2. Graphical representation of: (a) mean particle displacement (35a), (b) mean velocity (35b) for a free particle in case
of v0 = 1, x0 = 0, and Dirac delta frictional memory kernel. Parameters are as follows: λ = 1; μ = ν = 1 (solid line)—normal
Brownian motion, μ = 15/16, ν = 3/4 (dashed line); μ = ν = 7/8 (dotted-dashed line); μ = 3/4, ν = 3/8 (dotted line).

yields the known results for normal Brownian motion, 〈x(t)〉 = v0t E1,2 (−2λt) = v0
2λ

(
1 − e−2λt

)
and 〈v(t)〉 = v0 E1 (−2λt) = v0e−2λt . We see that the mean velocity does not depend on the
parameter ν in the force free case. The long time limit yields a power-law behavior, i.e.,
〈x(t)〉 � v0

2λ
tν−μ


(1+ν−μ) and 〈v(t)〉 � v0
2λ

t−μ


(1−μ) . The case μ = ν = α > 1
2 for the mean particle dis-

placement gives 〈x(t)〉 = v0tα Eα,α+1 (−2λtα) = v0
2λ

[1 − Eα (−2λtα)], which in the long time limit

〈x(t)〉 � v0
2λ

[
1 − 1

2λ
t−α


(1−α)

]
approaches the constant value v0

2λ
following a power-law instead of the

exponential approach in case of normal Brownian motion. The mean particle velocity shows slower
(power-law) decay to zero instead of exponential decay in case of normal Brownian motion. These
situations are represented in Figure 2. By substituting the relaxation functions in the general expres-
sions for variances and MSD can be shown that anomalous diffusion occurs. For example, if we use
μ = ν and ω = 0 we obtain that σxx

2kB T � t2ν−1

(2λ)(2ν−1)[
(ν)]2 , and thus σ xx � t for μ = ν = 1, which are
obtained in Ref. 31.

Let us now consider a power-law frictional memory kernel γ (t) = Cλ
t−λ


(1−λ) , where 1 − ν <

λ < 1 + μ, and Cλ is a constant which depends on λ. We will investigate this special case, and
the analysis for power-law memory kernel with different powers is straightforward. For example,
another special case is when λ ≥ 1 + μ or λ ≤ 1 − ν. By Laplace transform it follows γ̂ (s) = Cλsλ−1.
From relations (17b), (17a), and (17c) we obtain

g(t) = L−1

[
sν

sμ+ν + Cλsν+λ−1 + ω2

]
= L−1

[
sν

sμ+ν + Cλsν+λ−1

1

1 + ω2

sμ+ν+Cλsν+λ−1

]

= L−1

[ ∞∑
n=0

(−ω2
)n sν−(ν+λ−1)(n+1)(

sμ−λ+1 + Cλ

)n+1

]

=
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)−ν−1 En+1
μ−λ+1,(μ+ν)(n+1)−ν

(−Cλtμ−λ+1
)
, (39a)

G(t) =
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)−1 En+1
μ−λ+1,(μ+ν)(n+1)

(−Cλtμ−λ+1) , (39b)

I (t) =
∞∑

n=0

(−ω2)nt (μ+ν)(n+1)+ν−1 En+1
μ−λ+1,(μ+ν)(n+1)+ν

(−Cλtμ−λ+1
)
. (39c)

Note that for λ = 1 + μ one obtains relaxation function G(t) = tμ+ν−1

1+C1+μ
Eμ+ν,μ+ν

(
− ω2

1+C1+μ
tμ+ν

)
and for λ = 1 − ν, G(t) = tμ+ ν − 1Eμ + ν, μ + ν( − (ω2 + C1 − ν)tμ+ ν).
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Following same procedure as previous, by using the asymptotic expansion formula for three
parameter M-L function for t → ∞, relation (39c) yields

I (t) = tλ+2ν−2

Cλ

Eλ+ν−1,λ+2ν−1

(
−ω2

Cλ

tλ+ν−1

)
. (40)

For t → 0, the relaxation function (39c) becomes

I (t) = tμ+2ν−1 Eμ−λ+1,μ+2ν

(−Cμtμ−λ+1
)
. (41)

From relations (39a)–(39c), in case of a free particle (ω = 0), we obtain the following relaxation
functions

g(t) = lim
ω→0

∞∑
n=0

(−ω2)nt (μ+ν)(n+1)−ν−1 En+1
μ−λ+1,(μ+ν)(n+1)−ν

(−Cλtμ−λ+1
)

= tμ−1 Eμ−λ+1,μ

(−Cλtμ−λ+1
)
, (42a)

G(t) = tμ+ν−1 Eμ−λ+1,μ+ν

(−Cλtμ−λ+1
)
, (42b)

I (t) = tμ+2ν−1 Eμ−λ+1,μ+2ν

(−Cλtμ−λ+1
)
, (42c)

which will be used for investigation of the generalized Einstein relation.
For the average particle displacement and velocity (19), as previous, we obtain

〈x(t)〉 = x0

[
1 − ω2

∞∑
n=0

(−ω2)nt (μ+ν)(n+1) En+1
μ−λ+1,(μ+ν)(n+1)+1

(−Cλtμ−λ+1
)]

+v0

∞∑
n=0

(−ω2)nt (μ+ν)n+ν En+1
μ−λ+1,(μ+ν)n+ν+1

(−Cλtμ−λ+1
)
, (43a)

〈v(t)〉 = v0

∞∑
n=0

(−ω2)nt (μ+ν)n En+1
μ−λ+1,(μ+ν)n+1

(−Cλtμ−λ+1
)

−ω2x0

∞∑
n=0

(−ω2)nt (μ+ν)n+μEn+1
μ−λ+1,(μ+ν)n+μ+1

(−Cλtμ−λ+1
)
,

(43b)

which yields the following asymptotic behaviors

〈x(t)〉 �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0

[
1 − ω2 tμ+ν


(1+μ+ν) + ω2Cλ
t1+2μ+ν−λ


(2+2μ+ν−λ)

]
+ v0

[
tν


(1+ν) − Cλ
t1+μ+ν−λ


(2+μ+ν−λ) − ω2 tμ+2ν


(1+μ+2ν)

]
for t → 0,

x0 Eν+λ−1

(
− ω2

Cλ
tν+λ−1

)
+ v0t−μ

ω2

[
1


(1−μ) − Eν+λ−1,1−μ

(
− ω2

Cλ
tν+λ−1

)]

� x0
Cλ

ω2
t1−(ν+λ)


(2−(ν+λ)) + v0
ω2

t−μ


(1−μ) − v0Cλ

ω4
t1−(μ+ν+λ)


(2−(μ+ν+λ)) ,

for t → ∞
(44a)

〈v(t)〉

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v0

[
1 − Cλ

t1+μ−λ


(2+μ−λ)

]
− x0ω

2
[

tμ


(1+μ) − Cλ
t1+2μ−λ


(2+2μ−λ)

]
for t → 0,

v0 t−(μ+ν)

ω2

[
1


(1−(μ+ν)) − Eν+λ−1,1−μ−ν

(
− ω2

Cλ
tν+λ−1

)]
− x0t−ν

[
1


(1−ν) − Eν+λ−1,1−ν

(
− ω2

Cλ
tν+λ−1

)]

� v0
ω2

t−(μ+ν)


(1−(μ+ν)) − v0Cλ

ω4
t1−(μ+2ν+λ)


(2−(μ+2ν+λ)) − x0
t−ν


(1−ν) + x0Cλ

ω2
t1−(2ν+λ)


(2−(2ν+λ))

for t → ∞.

(44b)
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FIG. 3. Graphical representation of: (a) mean particle displacement (43a), (b) mean velocity (43b) for v0 = 1, x0 = 0, and
power-law frictional memory kernel. Parameters are as follows: Cλ = 1, μ = ν = 3/4, ω = 1; λ = 3/9 (solid line), λ = 4/9
(dashed line); λ = 5/9 (dotted-dashed line); λ = 6/9 (dotted line).

Graphical representation of the mean particle displacement and velocity for x0 = 0 and v0 = 1,
for different values of parameters is given in Figure 3. The force free case (ω = 0) for x0 = 0
yields 〈x(t)〉 = v0tν Eμ−λ+1,ν+1

(−Cλtμ−λ+1
)

and 〈v(t)〉 = v0 Eμ−λ+1
(−Cλtμ−λ+1

)
, which in the

long time limit turn to 〈x(t)〉 � v0
Cλ

tν−(μ−λ+1)


(1+ν−(μ−λ+1)) and 〈v(t)〉 � v0
Cλ

t−(μ−λ+1)


(1−(μ−λ+1)) . We see that the mean
particle velocity does not depend on parameter ν for the force free case. Graphical representation
of the force free case is given in Figure 4. Note that the case μ = ν = 1 (GLE with a power-law
frictional memory kernel) yields the known results64 for t → ∞

〈x(t)〉 � x0
Cλ

ω2

t−λ


 (1 − λ)
− v0Cλ

ω4

t−(1+λ)


(−λ)
= Cλ

ω2

sin(λπ )

π

[
x0


(λ)

tλ
+ v0

ω2


(1 + λ)

t1+λ

]
, (45a)

〈v(t)〉 � −v0Cλ

ω4

t−(2+λ)


 (−(1 + λ))
+ x0Cλ

ω2

t−(1+λ)


(−λ)
= −Cλ

ω2

sin(λπ )

π

[
x0


(1 + λ)

t1+λ
+ v0

ω2


(2 + λ)

t2+λ

]
,

(45b)

where we use 
(α)
(1 − α) = π
sin(απ) , i.e., 
(−α)
(1 + α) = − π

sin(απ) . From Figures 3 and 4 we see
that, by changing of parameters, various behaviors for the mean particle displacement and velocity
occur. This frictional memory kernel also leads to anomalous diffusive processes which can be
obtained from the variances and MSD.

2. Normalized displacement correlation function

One may consider the following conditions x2
0 = kB T

ω2 , 〈x0v0〉 = 0 and 〈ξ (t)x0〉 = 0. Let us in-
troduce the normalized displacement correlation function through the two-point correlation function
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FIG. 4. Graphical representation of: (a) mean particle displacement (43a), (b) mean velocity (43b) for a free particle in case
of v0 = 1, x0 = 0, and power-law frictional memory kernel. Parameters are as follows: Cλ = 1; μ = 3/4, ν = 5/8, λ = 1/2
(solid line), μ = 1/2, ν = 3/8, λ = 3/4 (dashed line), μ = 3/8, ν = 3/4, λ = 3/8 (dotted-dashed line); μ = 1, ν = 7/8, λ =
1/4 (dotted line).
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〈x(t)x0〉, as CX (t) = 〈x(t)x0〉〈x2
0〉 .4 It is an experimentally measured quantity, and was used, for example, in

the analysis of experimental results for the fluctuations of the distance between fluorescein-tyrosine
pair within a single protein.45 From relation (16a), we obtain

ĈX (s) = sμ+ν−1 + sν−1γ̂ (s)

sμ+ν + sν γ̂ (s) + ω2
, (46)

from where we find the following general expression

CX (t) = 1 − ω2 I 1−ν
0+ I (t). (47)

From relation (4) and by the definition of CX(t) it can be shown that the following fractional
differential equation is satisfied

C Dμ

0+
[

C Dν
0+CX (t)

] +
∫ t

0
γ (t − t ′)

[
C Dν

0+CX (t ′)
]

dt ′ + ω2CX (t) = 0, (48)

for initial conditions CX(0 +) = 1 and C Dν
0+CX (0+) = 0.

Let us first consider the Dirac delta noise γ (t) = 2λδ(t). Equation (48) becomes

C Dμ

0+
[

C Dν
0+CX (t)

] + 2λ
[

C Dν
0+CX (t)

] + ω2CX (t) = 0. (49)

By using Laplace transform of Caputo derivative (6) we obtain

sμ
[
sνĈX (s) − sν−1CX (0+)

] − sμ−1
C Dν

0+CX (0+) + 2λ
[
sνĈX (s) − sν−1CX (0+)

] + ω2ĈX (s) = 0,

(50)

from where, by using initial conditions, it follows

ĈX (s) = sμ+ν−1 + 2λsν−1

sμ+ν + 2λsν + ω2
. (51)

Inverse Laplace transform yields the solution of Eq. (49) given by

CX (t) = 1 +
∞∑

n=0

(−ω2)n+1t (μ+ν)(n+1) En+1
μ,(μ+ν)(n+1)+1 (−2λtμ)

=
∞∑

n=0

(−ω2)nt (μ+ν)n En
μ,(μ+ν)n+1 (−2λtμ) , (52)

which satisfies the initial conditions, and which convergence is proven in Ref. 54. The long time

limit yields CX (t) � Eν

(
−ω2

2λ
tν

)
� 2λ

ω2
t−ν


(1−ν) , from where we see that CX(t) does not depend on

parameter μ. In the short time limit CX(t) behaves as CX (t) � 1 − ω2 tμ+ν


(1+μ+ν) .

Remark 1 Note that if we use the procedure as in Sec. II, we can show that Eq. (49) can be
transformed to more suitable form

C̈X (t) + 2λ
[

C D2−μ

0+ CX (t)
]

+ ω2

[
C D2−(μ+ν)

0+ CX (t) + tμ+ν−2


(μ + ν − 1)

]
= 0, (53)

with initial conditions in classical form ĊX (0+) = 0 and CX(0 +) = 1. Thus, the second term
represents the memory effects of the environment, and the third term gives generalized force which
acts on the particle.

Remark 2 Here, we consider a special case μ = ν = α > 1
2 which yields some interesting

results for infinite series in three parameter M-L functions. As we will show, some infinite series
in three parameter M-L functions can be simplified and represented through one parameter and
two parameter M-L functions. For this special case, normalized displacement correlation function
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becomes

CX (t) =
∞∑

n=0

(−ω2)nt2αn En
α,2αn+1 (−2λtα) . (54)

From the other side we can write

ĈX (s) = s2α−1 + 2λsα−1

s2α + 2λsα + ω2
=

⎧⎪⎨
⎪⎩

s−1 − r1r2
r1−r2

(
s−1

sα−r1
− s−1

sα−r2

)
if λ �= ω,

s2α−1+2ωsα−1

(sα+ω)2 if λ = ω,

(55)

where r1/2 = −λ ± √
λ2 − ω2 are roots of s2α + 2λsα +ω2 = (sα − r1)(sα − r2) = 0, and thus

r1 − r2 = 2
√

λ2 − ω2, r1 + r2 = − 2λ, r1r2 = ω2. From relation (55) for CX(t) we obtain

CX (t) =
{

1 − r1r2tα

r1−r2

[
Eα,α+1 (r1tα) − Eα,α+1 (r2tα)

] = r1 Eα (r2tα )−r2 Eα(r1tα )
r1−r2

if λ �= ω,

E2
α,1 (−ωtα) + 2ωtα E2

α,1+α (−ωtα) = Eα (−ωtα) + ωtα

α
Eα,α (−ωtα) if λ = ω.

(56)

Thus, we obtain that the following relations holds true

∞∑
n=0

(−r1r2t2α)n En
α,2αn+1 ((r1 + r2) tα) = r1 Eα (r2tα) − r2 Eα (r1tα)

r1 − r2
, (57)

i.e.,
∞∑

n=0

(−xy)n En
α,2αn+1 (x + y) = x Eα (y) − yEα (x)

x − y
, (58)

where x = r1tα , y = r2tα , and

∞∑
n=0

(−ω2t2α)n En
α,2αn+1 (−2ωtα) = Eα (−ωtα) + ωtα

α
Eα,α (−ωtα) , (59)

i.e.,
∞∑

n=0

(−x2)n En
α,2αn+1 (2x) = Eα (x) − x

α
Eα,α (x) , (60)

where x = − ωtα . Note that relations (58) and (60) can be obtained by using following formu-
las

∑∞
n=0(−xy)n En+1

α,2αn+β (x + y) = x Eα,β (x)−yEα,β (y)
x−y for x �= y, and

∑∞
n=0(−x2)n En+1

α,2αn+β (2x) =
Eα,β (x) + x d

dx Eα,β (x), consequently.59 Let us show these. From relation (52), for the case of dif-
ferent roots we obtain

1 − xy
∞∑

n=0

(−xy)n En+1
α,2αn+2α+1 (x + y) = 1 − xy

x − y

[
x Eα,2α+1(x) − yEα,2α+1(y)

]

= x Eα (y) − yEα (x)

x − y
(61)

and

1 − x2
∞∑

n=0

(−x2)n En+1
α,2αn+2α+1 (2x) = 1 − x2

[
Eα,2α+1(x) + x

d

dx
Eα,2α+1 (x)

]

= Eα(x) − x

α
Eα,α (x) , (62)

for the case of equal roots, where we used some basic relations for the M-L functions.24

Graphical representation of the normalized displacement correlation function is given in
Figure 5. From the plots of Figs. 5(a)–5(c) we see that for different values of frequency ω and
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FIG. 5. Graphical representation of normalized displacement correlation function (52) in case of Dirac delta frictional
memory kernel; λ = 1; (a) μ = ν = 7/8, ω = 1 (solid line), ω = 3/2 (dashed line), ω = 59/32 (dotted-dashed line); ω = 4
(dotted line), (b) μ = ν = 7/8, ω = 29/16 (solid line), ω = 119/64 (dashed line), ω = 2 (dotted-dashed line), (c) μ = ν =
3/4, ω = 1 (solid line), ω = 3/2 (dashed line), ω = 3 (dotted-dashed line); ω = 4 (dotted line), (d) ω = 5/2; μ = ν = 7/8
(solid line), μ = ν = 3/4 (dashed line), μ = 3/4, ν = 7/8 (dotted-dashed line), μ = 7/8, ν = 3/4 (dotted line).

given values of μ and ν, the normalized displacement correlation function has different behaviors,
from monotonic decay without crossing the zero line, oscillation-like behavior crossing the zero
line, as well as non-monotonic decay approaching the zero line without crossing it. These results
are different than the one for classical harmonic oscillator, where only two different behaviors may
occur: overdamped motion for which 〈x(t)〉 > 0 for any time t when 〈x0〉 > 0 and there are no
oscillations, and underdamped motion, where 〈x(t)〉 crosses the zero line and oscillates.4 Frequency
on which transition from overdamped to underdamped motion appears is so-called critical frequency.
In fractional models, there are additional definitions of critical frequencies.4 These are frequencies
on which the oscillator changes its behavior, for example, from monotonic to non-monotonic decay
without crossings of zero line, or the frequency on which crossings of zero line appear. From the plot
of Fig. 5(d) we see that for different values of μ and ν and constant frequency ω the oscillator may
have different behavior. Note that in the long time limit the normalized displacement correlation

function CX (t) � Eν

(
−ω2

2λ
tν

)
� 2λ

ω2
t−ν


(1−ν) is a completely monotone function, due to the fact that

the one parameter M-L function Eα( − tα) is a completely monotone function for 0 < α < 1 (see,
for example, Ref. 7).

For the power-law frictional memory kernel γ (t) = Cλ
t−λ


(1−λ) Eq. (48) becomes

C Dμ

0+
[

C Dν
0+CX (t)

] + Cλ I 1−λ
0+

[
C Dν

0+CX (t)
] + ω2CX (t) = 0. (63)

From the Laplace transform of Caputo derivative (6), by using the initial conditions CX(0 +) = 1
and C Dν

0+CX (0+) = 0, we obtain

sμ
[
sνĈX (s) − sν−1

] + Cλsλ−1
[
sνĈX (s) − sν−1

] + ω2ĈX (s) = 0, (64)

from where it follows

ĈX (s) = sμ+ν−1 + Cλsν+λ−2

sμ+ν + Cλsν+λ−1 + ω2
. (65)
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FIG. 6. Graphical representation of normalized displacement correlation function (66) in case of power-law frictional
memory kernel; Cλ = 1; (a) μ = ν = 7/8, λ = 1/2, ω = 1/2 (solid line), ω = 7/8 (dashed line), ω = 11/8 (dot-dashed line);
ω = 9/4 (dotted line), (b)4 μ = ν = 1, ω = 0.3 (solid line), ω = 1.053 (dashed line), ω = 3 (dot-dashed line), (c) ω = 9/4, λ

= 1/2, μ = ν = 1 (solid line), μ = ν = 7/8 (dashed line), μ = ν = 3/4 (dot-dashed line), μ = 3/4, ν = 5/8 (dotted line), (d)
μ = ν = 7/8, ω = 1, λ = 1/5 (solid line), λ = 1/2 (dashed line), λ = 3/4 (dot-dashed line), λ = 15/16 (dotted line).

The inverse Laplace transform of (65) yields the solution

CX (t) = 1 +
∞∑

n=0

(−ω2)n+1t (μ+ν)(n+1) En+1
μ−λ+1,(μ+ν)(n+1)+1

(−Cλtμ−λ+1
)

=
∞∑

n=0

(−ω2)nt (μ+ν)n En
μ−λ+1,(μ+ν)n+1

(−Cλtμ−λ+1
)
, (66)

which satisfies the initial conditions, and which convergence is proven in Ref. 54. The long
time limit yields power-law decay of normalized displacement correlation function CX (t) �
Eν+λ−1

(
−ω2

Cλ
tν+λ−1

)
� Cλ

ω2
t−(ν+λ−1)


(1−(ν+λ−1)) , and for the short time limit it is obtained CX (t) � 1 −
ω2 tμ+ν


(1+μ+ν) + Cλω
2 t1+2μ+ν−λ


(2+2μ+ν−λ) . The case μ = ν = 1 recovers the results obtained in Ref. 4, i.e.,

CX (t) � Cλ

ω2
t−λ


(1−λ) for t → ∞ and CX (t) � 1 − ω2 t2

2 + Cλω
2 t4−λ


(5−λ) for t → 0. As a special case,

one can consider λ = 1 − ν−μ

2 . In this case CX(t) is given by (56) where α → μ+ν

2 and λ → Cλ

2 .
The case μ = ν = 1, i.e., C̈X (t) + CλC Dλ

0+CX (t) + ω2CX (t) = 0 corresponds to that considered by
Burov and Barkai,4 where they investigated the overdamped, underdamped, and critical behaviors of
such fractional Langevin equation by using the method of complementary polynomials. Graphical
representation of the normalized displacement correlation function is given in Figure 6. From plot
(a) of Fig. 6 we see that there are different type behaviors of CX(t), such as monotonic decay, non-
monotonic decay, oscillation-like behavior without and with crossings of the zero line. In plot (b) of
Fig. 6 we present the results obtained by Burov and Barkai4 for fractional Langevin equation (μ =
ν = 1). Plot (c) of Fig. 6 shows that by decreasing parameters μ and ν, for fixed λ and frequency
ω, the normalized displacement correlation function from behavior with zero crossings may turn
to behavior without zero crossings. Changes in behavior of CX(t), from oscillation-like behavior
without zero crossings to non-monotonic and monotonic decay, for fixed μ, ν, and ω, by increasing
parameter λ, are shown in plot (d) of Fig. 6.
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Such oscillations of the CX(t), as shown in Figures 5 and 6, were observed in the molecular
dynamic simulations of fluctuations of donor-acceptor distance for a single protein,38 and a power-
law decay of CX(t) in the distance between fluorescein-tyrosine pair within a single protein.45

Remark 3 Same as in Remark 1, Eq. (63) can be transformed to

C̈X (t) + Cλ

[
C D1+λ−μ

0+ CX (t)
]

+ ω2

[
C D2−(μ+ν)

0+ CX (t) + tμ+ν−2


(μ + ν − 1)

]
= 0, (67)

with initial conditions ĊX (0+) = 0 and CX(0 +) = 1. Again, second term represents the memory
effects of the environment, and the third term gives the generalized force acting on the particle. Thus,
normalized displacement correlation function can be considered in a same way as in the classical
case, taking into account the memory effect of the complex environment on particle movement,
and more general form of the potential energy function (different from the harmonic potential
approximation), which gives the confined movement of the particle.

3. External noise case

In the case of external noise, the fluctuation-dissipation theorem (3) does not hold and we
cannot use relations (21a)–(21c). In this case, we proceed as follows. Let us consider a power-law
correlation function C(t) = Cθ t− θ /
(1 − θ ), where 0 < θ < 1, and a power-law friction kernel γ (t)
= Cλt− λ/
(1 − λ), where 1 − ν < λ < 1 + μ. For the correlations we obtain

σxx = 2
∫ t

0
dt1G(t1)

∫ t1

0
dt2G(t2)C(t1 − t2) = 2Cθ

∫ t

0
dξG(ξ )I 1−θ

0+ G(ξ ), (68a)

σxv =
∫ t

0
dt1g(t1)

∫ t

0
dt2G(t2)C(t1 − t2) = Cθ

∫ t

0
dξ

(
G(ξ )I 1−θ

0+ g(ξ ) + g(ξ )I 1−θ
0+ G(ξ )

)
, (68b)

σvv = 2
∫ t

0
dt1g(t1)

∫ t1

0
dt2g(t2)C(t1 − t2) = −2Cθ

∫ t

0
dξg(ξ )I 1−θ

0+ g(ξ ), (68c)

where g(t), G(t), and I(t) are given by (39a)–(39c), respectively. For the fractional integrals of
relaxation functions, needed to calculate correlations, we find

I 1−θ
0+ g(t) =

∞∑
n=0

(−ω2)nt (μ+ν)(n+1)−ν−θ En+1
μ−λ+1,(μ+ν)(n+1)−ν−θ+1

(−Cλtμ−λ+1
)
, (69a)

I 1−θ
0+ G(t) =

∞∑
n=0

(−ω2)nt (μ+ν)(n+1)−θ En+1
μ−λ+1,(μ+ν)(n+1)−θ+1

(−Cλtμ−λ+1) , (69b)

where we use the formula I γ

0+
[
tβ Eδ

α,β+1 (−atα)
]

= tβ+γ Eδ
α,β+γ+1 (−atα), α > 0, β > 0, γ > 0,

δ > 0, a is a constant.24 To find analytical expressions for the correlations from these results is a
nontrivial problem, and can be achieved by using the formula for a product of two M-L functions.60

By using the asymptotic expansion formula for the three parameter M-L function, in the long time
limit we obtain

I 1−θ
0+ G(t) = tν+λ−1−θ

Cλ

Eν+λ−1,ν+λ−θ

(
−ω2

Cλ

tν+λ−1

)
� 1

ω2

t−θ


(1 − θ )
. (69c)

From relations (69c) and (68a) it follows that σ xx � t1 − (ν + λ + θ) for t → ∞. For the short time limit,
we obtain

I 1−θ
0+ G(t) = tμ+ν−θ Eμ−λ+1,μ+ν−θ+1

(−Cλtμ−λ+1
) � tμ+ν−θ


(1 + μ + ν − θ )
, (69d)
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so relations (69d) and (68a) yield σ xx � t2(μ + ν) − θ for t → 0. Note that the case of a free particle (ω
= 0) yields

I 1−θ
0+ g(t) = tμ−θ Eμ−λ+1,μ−θ+1

(−Cλtμ−λ+1) , (69e)

I 1−θ
0+ G(t) = tμ+ν−θ Eμ−λ+1,μ+ν−θ+1

(−Cλtμ−λ+1
)
, (69f)

which for ν = 1 are equivalent to those obtained in Ref. 17.
From relations (68a) and (69f), and by help of the asymptotic expansion formula of the M-L

function, in the long time limit t → ∞ we recover the following results by Lim and Teo37

σxx � t2λ−θ+2ν−2, 2λ − θ + 2ν − 2 > 0, (70a)

σxx � ln(t), 2λ − θ + 2ν − 2 = 0, (70b)

σxx � const, 2λ − θ + 2ν − 2 < 0. (70c)

Note that the variance σ xx in the long time limit does not depend on μ, but it depends on ν. The
case ν = 1 corresponds to the results obtained by Fa,17

σxx � t2λ−θ , 2λ − θ > 0, (71a)

σxx � ln(t), 2λ − θ = 0, (71b)

σxx � const, 2λ − θ < 0. (71c)

Thus, for given values of parameters a logarithmic dependence of the variance on time is
obtained. Such processes are known as ultraslow processes.12

D. Overdamped limit

Let us assume that our harmonic oscillator moves in the high friction limit, i.e., is subject to
strong viscous damping. This means that the inertial term C Dμ

0+v(t) can be neglected, and we are
concerned with ∫ t

0
γ (t − t ′)v(t ′)dt ′ + ω2x(t) = ξ (t), C Dν

0+x(t) = v(t). (72)

Such overdamped behavior appears naturally on microscopic scales in water-like environments, for
instance, when we consider slow protein conformation fluctuations.9 Following the same procedure
as above, by help of the Laplace transform method we obtain

x(t) = 〈x(t)〉 +
∫ t

0
G0(t − t ′)ξ (t ′)dt ′, (73a)

v(t) = 〈v(t)〉 +
∫ t

0
g0(t − t ′)ξ (t ′)dt ′, (73b)

where

〈x(t)〉 = x0
[
1 − ω2 I 1

0+G0(t)
]
, 〈v(t)〉 = −ω2x0 I 1−ν

0+ G0(t). (73c)

Here, we introduced

G0(t) = L−1
[
Ĝ0(s)

] = L−1

[
1

sν γ̂ (s) + ω2

]
, (73d)
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such that G0(0) = 0, I0(t) = L−1
[
s−ν Ĝ0(s)

]
, i.e., C Dν

0+ I0(t) = G0(t), and C Dν
0+G0(t) = g0(t). In

a same way as in (21a)–(21c), for the correlators we find

σxx = 2kB T
∫ t

0
dξG0(ξ )

[
ξν−1


(ν)
− ω2 I0(ξ )

]
, (74a)

σxv = kB T

[
1


(ν)

∫ t

0
dξg0(ξ )ξν−1 − ω2

∫ t

0
dξ

(
G2

0(ξ ) + g0(ξ )I0(ξ )
)]

, (74b)

σvv = 〈v2(t)〉 − 〈v(t)〉2 = −2kB T ω2
∫ t

0
dξG0(ξ )g0(ξ ). (74c)

Note that if we consider δ-shaped friction kernel, γ (t) = 2λδ(t), we obtain for the relaxation
functions

g0(t) = 1

2λt
Eν,0

(
−ω2

2λ
tν

)
, G0(t) = tν

2λt
Eν,ν

(
−ω2

2λ
tν

)
, I0(t) = t2ν

2λt
Eν,2ν

(
−ω2

2λ
tν

)
. (75)

These results are equivalent to those obtained from the full model (Eq. (32)) in the long time limit
when inertial effects become negligible. Thus, we can conclude that in the long time limit instead of
the FGLE (4) we can investigate the corresponding overdamped motion (72), in analogy to ordinary
diffusion. The same situations occur in case of power-law friction kernel, i.e., the relaxation functions
in the overdamped limit are equivalent to Eq. (40).

Let us now consider the case when we use the three parameter M-L friction kernel51, 54

C(t) = Cα,β,δ

τ αδ
tβ−1 Eδ

α,β

(
− tα

τα

)
, (76)

where τ is a characteristic time scale, Cα, β, δ is a proportionality coefficient independent of time,
and we observe the restrictions α > 0, β > 0, δ > 0. The noise correlator (76) satisfies the
condition limt→∞ γ (t) = lims→0 sγ̂ (s) = 054 for β < 1 + αδ. This memory kernel is a very useful
tool to generate various different behaviors of the particle, sub-diffusion, super-diffusion, or normal
diffusion.51, 54 The complete monotonicity of function of form (76) is discussed by Capelas de
Oliveira et al.7

For the relaxation function G0(t), we obtain

G0(t) = 1

ω2

∞∑
k=0

(
−γα,β,δ

ω2

)k
t (β−ν)k−1 Eδk

α,(β−ν)k

(
− tα

τα

)
, (77)

where γ α, β, δ = Cα, β, δ/[kBTταδ]. The convergence of series in three parameter M-L functions of
form (77) is proven in Ref. 54. Here, we use the Laplace transform of the three-parameter M-L
function (30) and the following Laplace transform formula62

sμ(α−1)

sα + λ
[

sργ−α

(sρ+ν)γ

] = L
[ ∞∑

k=0

(−λ)k t2αk+α+μ−μα−1 Eγ k
ρ,2αk+α+μ−μα (−νtρ)

]
(s). (78)

The long time limit produces

G0(t) = t−1

ω2
Eβ−ν−αδ,0

(
− Cα,β,δ

kB T ω2
tβ−ν−αδ

)

= kB T tν+αδ−β−1

Cα,β,δ

Eν+αδ−β,ν+αδ−β

(
−kB T ω2

Cα,β,δ

tν+αδ−β

)
, (79)

where ν + αδ − β > 0, and we use the relation E− α, β(z) = − z− 1Eα, α + β(1/z) for α > 0.23 Thus,
the behavior of the relaxation function G(t) of a harmonic oscillator in the long time limit is same as
that of G0(t). This can be shown following the procedure in Ref. 54, if in relations (17a) and (76),
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we apply the Tauberian theorem.21 Indeed, for αδ − β < μ we obtain

Ĝ(s) = 1

sμ+ν + Cα,β,δ

kB T sν+αδ−β + ω2
≈ kB T

Cα,β,δ

· 1

sν+αδ−β + kB T ω2

Cα,β,δ

, s → 0. (80)

By inverse Laplace transform, for t → ∞ follows relation (79).

III. FGLE WITH EXTERNAL CONSTANT FORCE: GENERALIZED EINSTEIN RELATION

We now turn to the case of a constant external force, F(x) = Fθ (t), for which we find that

C Dμ

0+v(t) +
∫ t

0
γ (t − t ′)v(t ′)dt ′ − F = ξ (t), C Dν

0+x(t) = v(t). (81)

For vanishing initial conditions (x0 = 0, v0 = 0), from the Laplace transform of Eq. (81) we obtain

x(t) = 〈x(t)〉F +
∫ t

0
G(t − t ′)ξ (t ′)dt ′ (82)

with

〈x(t)〉F = FL−1
[
s−1Ĝ(s)

]
, Ĝ(s) = 1

sμ+ν + sν γ̂ (s)
. (83)

Thus, we conclude that the mean displacement is given by

〈x(t)〉F = F
∫ t

0
G(ξ )dξ. (84)

Conversely, if we consider the force free case F(x) = 0, from relation (21a) it follows that

[〈x2(t)〉 − 〈x(t)〉2
]

0 = 2kB T
∫ t

0
dξG(ξ )

[
ξν−1


(ν)
− C Dμ

0+G(ξ )

]
. (85)

From Eq. (34b) in case of Dirac δ-noise and Eq. (42b) in case of a power-law noise, in the long time
limit we obtain [〈x2(t)〉 − 〈x(t)〉2

]
0 = 2kB T

∫ t

0
dξG(ξ )

ξν−1


(ν)
. (86)

Thus, from relations (84) and (86), we conclude that the generalized Einstein relation1, 43

〈x(t)〉F = F

2kB T

[〈x2(t)〉 − 〈x(t)〉2]
0 (87)

does not hold for the considered FGLE. Only if we use ν = 1 we see that the generalized Einstein
relation holds in the long time limit. The validity of the generalized Einstein relation (87) was shown
for the fractional Langevin equation,39 which can be obtained from the results in this paper if we
use μ = ν = 1, and γ (t) = Cλt− λ/
(1 − λ), for 0 < λ < 2. Furthermore, we show that for ν = 1
(the case considered in Ref. 17, and investigated in case of a free particle in Ref. 14), in case of
Dirac-δ and power-law noises, generalized Einstein relation holds true in the long time limit. Detail
investigation of violation of generalized Einstein relation and description of its nature for a specific
model, describing electronic transport in disordered system, is given by Barkai and Fleurov.1 As we
discussed in Sec. II, in the FGLE we view the variables to represent a mesoscopic description of the
process, and thus the expectation values of observables calculated from this theory then describe the
dynamic behavior after averaging over the disorder of the system.

IV. CONCLUSIONS

In this paper, we derived general formulas for the correlations of the FGLE for a harmonic
oscillator with two time fractional derivatives in case of an internal noise. It is shown that they
are different than the one of GLE, which cannot be used for FGLE models in order to investigate
anomalous diffusion. Friction memory kernels of Dirac δ, power-law, and M-L forms are considered.
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Different cases for modeling anomalous diffusive processes are investigated. As special case, we
recovered the results for a free particle. The normalized displacement correlation function CX(t),
which is experimentally measured quantity, is analyzed and some interesting behaviors as those
obtained in Ref. 4 are observed. We obtained that by changing parameters the normalized displace-
ment correlation function may have monotonic decay and non-monotonic decay without crossings
of zero line, as well as oscillation-like behavior with and without crossings of zero line. As an
addition to these, relations for series in three-parameter M-L function are derived. We showed that
some infinite series in three parameter M-L functions can be simplified and represented in terms of
one parameter and two parameter M-L functions. The correlations for the FGLE in case of external
noise of power-law form are obtained as well. As an addition, results in the overdamped case are
obtained. These are shown to be equivalent to the long time results for the FGLE with inertia terms.
Thus, we are allowed to take the long time limit in analogy to regular diffusion. We showed that with
only few parameters many different behaviors of the particle dynamics occur and relative complex
data may be described. The validity of the generalized Einstein relation for such FGLEs dynamics
is discussed.
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35 P. Langevin, “Sur la théorie du mouvement brownien,” C. R. Acad. Sci. 146, 530 (1908).
36 E. K. Lenzi, L. C. Malacarne, R. S. Mendes, and I. T. Pedron, “Anomalous diffusion, nonlinear fractional Fokker-Planck

equation and solutions,” Physica A 319, 245 (2003); E. K. Lenzi, R. S. Mendes, K. S. Fa, L. C. Malacarne, and L. R. da
Silva, “Anomalous diffusion: Fractional Fokker-Planck equation and its solutions,” J. Math. Phys. 44, 2179 (2003).

37 S. C. Lim and L. P. Teo, “Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional
Langevin equation,” J. Stat. Mech.: Theory Exp. (2009), P08015.

38 G. Luo, I. Andricioaei, X. S. Xie, and M. Karplus, “Dynamic distance disorder in proteins is caused by trapping,” J. Phys.
Chem. B 110, 9363 (2006).

39 E. Lutz, “Fractional Langevin equation,” Phys. Rev. E 64, 051106 (2001).
40 F. Mainardi and P. Pironi, “The fractional Langevin equation: Brownian motion revisited,” Extr. Math. 10, 140

(1996).
41 B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev. 10,

422 (1968).
42 R. Metzler, “Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport

in external fields,” Phys. Rev. E 62, 6233 (2000).
43 R. Metzler, E. Barkai, and J. Klafter, “Anomalous diffusion and relaxation close to thermal equilibrium: A fractional

Fokker-Planck equation approach,” Phys. Rev. Lett. 82, 3563 (1999).
44 R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep.

339, 1 (2000); “The restaurant at the end of the random walk: recent developments in the description of anomalous transport
by fractional dynamics,” J. Phys. A: Math. Gen. 37, R161 (2004).

45 W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. S. Xie, “Observation of a power-law memory kernel for fluctuations
within a single protein molecule,” Phys. Rev. Lett. 94, 198302 (2005).

46 C. Monthus and J.-P. Bouchaud, “Models of traps and glass phenomenology,” J. Phys. A: Math. Gen. 29, 3847 (1996).
47 J. Paneva-Konovska, “Convergence of series in three parametric Mittag-Leffler functions,” Math. Slovaca (to be published);

“Inequalities and asymptotic formulae for the three parametric Mittag-Leffler functions,” Math. Balkanica 26, 203 (2012);
“On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence,” Cent.
Eur. J. Phys. 11, 1164 (2013).

48 N. Pottier, “Aging properties of an anomalously diffusing particule,” Physica A 317, 371 (2003); N. Pottier and A. Mauger,
“Anomalous diffusion of a particle in an aging medium,” ibid. 282, 77 (2000).

49 T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” Yokohama Math.
J. 19, 7 (1971).
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