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Stochastic optimization-based study of dimerization kinetics
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Abstract. We investigate the potential of numerical algorithms to decipher the kinetic parameters involved
in multi-step chemical reactions. To this end, we study dimerization kinetics of protein as a model system. We
follow the dimerization kinetics using a stochastic simulation algorithm and combine it with three different
optimization techniques (genetic algorithm, simulated annealing and parallel tempering) to obtain the rate con-
stants involved in each reaction step. We find good convergence of the numerical scheme to the rate constants
of the process. We also perform a sensitivity test on the reaction kinetic parameters to see the relative effects of
the parameters for the associated profile of the monomer/dimer distribution.
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1. Introduction

The principles of chemical kinetics constitute one of
the cornerstones in the study of chemical and biologi-
cal reaction networks. Evaluation of correct individ-
ual step-based pathways (both the nature of the reaction
as well as the correct magnitude of the rate constant)
present in a multi-step reaction scheme is central in
establishing a complete reaction model in any multi-
step reaction process. The conventional way to study
reaction kinetics is to write down the mean field rate
equations for the process, integrate them and follow the
variation in the concentration of each species involved
as a function of time. However, this strategy is too
simplistic and fails in situations where the number of
reacting species is small, since for small number of
particles, fluctuations in the species population become
relevant. In the conventional rate equations approach,
it is assumed that the process is both continuous and
deterministic. However, in reality, in particular in bio-
chemical reactions in living cells, these assumptions
often fail. Thus, reactants may occur at nanomolar
rates. Reaction kinetics at such low concentrations are
intrinsically discrete and stochastic. The stochastic
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simulation algorithm (SSA) is an elegant formulation to
incorporate these effects and predict correct results in
a complicated multi-step reaction network.1,2 Applica-
tions of SSA range from the study of simple schemes
such as two-step consecutive reactions or parallel reac-
tions,2 to biological systems such as the dynamics of
biopolymers such as DNA.3,4 The rate constants asso-
ciated with each individual step in a multi-step reac-
tion scheme might not always be known a priori, or
there might be a range of values of the rate constants,
for which predictions for the overall reaction are com-
patible with experimental data. The correct prediction
of all individual rate constants is not always an easy
task and involves an optimization process. If an opti-
mization scheme can be linked to SSA, then it should
be possible to evaluate a correct set of reaction para-
meters, quantifying the complete kinetic behaviour of a
reaction network. Here, we analyse in detail the appli-
cation of stochastic optimization schemes to the dimer-
ization kinetics of proteins. It is also an experimentally
well-studied kinetics.5,6

Optimization schemes can generally be classified
into two categories, deterministic and stochastic opti-
mization. The main difference between these two
schemes is that deterministic ones are not truly global
optimizers, whereas the stochastic ones are. Stochastic
optimizers are not gradient-based and incorporate the
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principle of stochasticity to arrive at correct solutions.
Here, we use three techniques separately in conjunc-
tion with the SSA scheme to evaluate the correct set of
reaction rate constants, these being simulated anneal-
ing (SA), genetic algorithm (GA) and parallel temper-
ing (PT). These algorithms are also known as natural
algorithms as they draw their working philosophy from
natural processes. In particular, they are robust and able
to find solutions to complex problems with consum-
mate ease, unlike deterministic methods. Let us summa-
rize the fundamental properties of the three stochastic
optimizers:

(i) SA is a global optimization technique which mi-
mics the process of annealing in metallurgy to
design a mathematical optimization scheme. Thus,
the energy landscape of the search space is initially
sampled at a high temperature, such that thermal
fluctuations may easily lift the optimizer out of
deeper minima. On decreasing the temperature, the
search is guided towards the global minimum. SA
has been widely used in the last few decades with
widespread applications ranging from the solution
of the travelling salesman problem, solving diffe-
rential equations, finding structures of novel mate-
rials and studies involving structure and dynamics
in quantum chemistry.7–15

(ii) PT is a method based on replica exchange among
randomly created configurations. PT has been suc-
cessfully used to solve highly dimensional opti-
mization problems with applications in the deter-
mination of structural features in proteins and
other polymeric materials, the study of spin glasses
and other solid state systems, or phase transitions
in clusters formed by hydrogen bonding or other
van-der Waals forces.16–23

(iii) GA uses the concepts of genetics and mimics the
natural process of selection, crossover and muta-
tion as present in living systems. GA has been
widely used, its applications ranging from solu-
tions of differential equations, geometry optimiza-
tion in large molecules and clusters, or the design
of laser pulses to follow dissociation dynamics of
molecular systems.24–33

As we are interested in the evaluation of the cor-
rect kinetic rate parameters of a multi-step reaction, it
is important to know a priori the relative importance
of each parameter. Sensitivity analysis is an important
statistical technique which can give us an insight into
this question. Such sensitivity analyses have been used
widely to assess how individual parameters influence
the dynamics when perturbed from their expected val-
ues.34,35 Such an analysis provides relevant information

to decide the actual reaction scheme of some chemi-
cal kinetics. If a parameter is more sensitive than the
other, small deviations from the mean value will leave
its mark on the kinetics by introducing large deviations
from expected trends, while for insensitive parameters,
the effect will be minimal. One can devise various mea-
sures for quantitatively calculating the sensitivity mea-
sures for various parameters such as the Fourier ampli-
tude based sensitivity test, 36,37 and others. This analysis
leads to a more in-depth understanding of any kinetic
scheme.

Here, we follow the three combined schemes:
GA+SSA, SA+SSA and PT+SSA to evaluate the cor-
rect set of rate constants necessary to explain all fea-
tures in the reaction scheme of the dimerization of a
protein. We perform a sensitivity test on the rate para-
meters in our model and use the findings to see if an
optimization strategy influenced by the sensitivity test
can lead to quicker convergence.

2. Dimerization model

In our study, we have chosen a minimal kinetic scheme
of protein dimerization,38 for which the minimal kinetic
steps can be described by the following elementary
reactions:

∅ k1−→ M, (1a)

M
k2−→ ∅, (1b)

M + M
k3−→ D, (1c)

D
k4−→ M + M, (1d)

D
k5−→ ∅, (1e)

where the ki are the rate constants for the individual
reactions steps (1a) to (1e), and M and D denote the
number of monomers and dimers of the protein, respec-
tively. To keep the dynamics simple, we neglect effects
of cell growth and cell division in the model, i.e., we
assume that the reaction occurs at fixed volume.

The marginal probability distribution function for
monomer and dimer can be defined as

˜Px(y, t) =
∫

P(x, y, t)dx, (2a)

˜Py(x, t) =
∫

p(x, y, t)dy, (2b)

where x and y are the number of monomer and dimer
molecules at time t , respectively. As the system deals
with small numbers of molecules, the time evaluation
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should be obtained by using stochastic formulation, i.e.,
by solving master equation. However, it is often quite
tedious to solve such a master equation analytically for
complicated systems similar to the present one. Con-
sequently, one has to resort to numerical methods to
quantify the underlying process, for instance by using
SSA.

Typically, in SSA, a probability density function
P(τ, μ)dτ is introduced for a given state at time t ,
which is a measure for the probability that within the
infinitesimal time interval (t + τ , t + τ + dτ ), the
μth reaction will occur, where the index μ stands for
a given reaction step. P(τ, μ)dτ is supposed to follow
Poissonian statistics such that

P(τ, μ) = αμexp − (α0τ) , (3)

where

αμ = hμcμ, α0 =
∑N

μ=1
hμcμ. (4)

In the latter relation, hμ is the number of molecules of
the species involved in the μth reaction step, cμ is the
respective rate constant and N is the number of reaction
channel. The time step τ is defined via

τ = 1

a0
ln

1

r1
. (5)

In SSA, the underlying randomness is introduced in the
choice of τ and μ: μ be the integer for which

∑μ−1

v=1
av < r2a0 ≤

∑μ

v=1
av, (6)

where r1 and r2 are random numbers between 0 to 1.1,2

τ , in eq. (5), thus can never be negative as r1 ≤ 1 (the
derivation of eq. (5) is given in Appendix). Utilizing
SSA in the present reaction scheme given by eqs (1a–e),
one may calculate the equilibrium marginal distribution
profile separately for monomer and dimer.

3. Stochastic optimization

We employ three optimization techniques SA, GA, and
PT to determine the optimum set of kinetic parameters
in our kinetic scheme. These optimization techniques
are not gradient-based and use stochastic principles,
hence are known as stochastic optimizers. All the simu-
lations are started with an arbitrary parameter set,
which is obtained by perturbing the literature value of
the rate constants in the dimerization of protein to a
preset extent. The same initial parameter set has been
taken for all the three optimization schemes. To fol-
low the progress of the optimization, we compare the

probability distribution profile of the monomers and
dimers of the protein obtained by using the literature
value of the rate constants in the SSA with the distri-
bution profile for various sets of rate constants obtained
from different iterations of the simulations. The para-
meters are said to be optimized if the distribution profile
for a set of parameters coincides with the distribution
profile from literature within 0.01%.

During the simulation, the parameter set of rate con-
stants obtained in each iteration is fed into the SSA to
produce the distribution profile corresponding to this
output of the optimizer. Then, an objective function,
popularly known as the cost function, is calculated to
measure the extent of difference between the present
distribution profile and the profile obtained for the
literature value of the parameter set (expected dis-
tribution profile). The cost function is basically the
cumulative differences in probabilities for the two dis-
tribution profiles, for different species (in our system
for the monomer and the dimer only). While calculat-
ing the difference in the two distributions, magnitudes
of the two functions at certain discrete points have been
taken. The index ‘i’ in eq. (7) refers to the discrete
points, at which the values of the two functions have
been compared.

cost =
∑n

m=1

∑k

i=1

(

˜Pl (mi) − ˜P (mi)
)2

, (7)

where ˜Pl (mi) and ˜P (mi) are the probabilities of the
mth species at the i th grid point (whereas, n is the total
number of species and k is the total number of grid
points) in the distribution profile obtained by feeding
the literature value of the rate constants38 in SSA and
the profile for the rate parameters at a optimization step
respectively. The cost has to be minimized with simula-
tion and for the optimum solution it must tend to zero.
Figure 1 shows the distribution profiles for litera-
ture value and for a set of optimized parameters,
which actually coincides with the objective distribution
profile.

Assigning of cost function utterly depends on the
specificity of the problem. The above equation may not
be the ultimate way to define cost function. One may
define cost with respect to the time series profile of
mean and variance also. Then, it becomes our objective
to reach the mean and variance profile for the literature
value, in course of optimization.

cost =
∑n

m=1

∑k1

i

(

[m]l
i − [m]i

)2

+ (

Var (m)1
i − Var (m)i

)2
, (8)
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Figure 1. Plot of distribution profile of monomer and
dimer. Solid line denotes the profile for literature value of rate
parameters and the open circles represent the profile for opti-
mized set. Red and blue colours depict monomer and dimer,
respectively.

[m]i and Var(m)i are the concentration and the vari-
ance of mth species at i th time, respectively. Term with
notation l is for the expected profile and the other is
obtained from simulation. In this case also, the cost
would be theoretically zero for the optimal solution.
Figure 2 represents such profile for literature value of
rate constants and the profile for the set of rate constant
acquired from an optimization run.

(a)

(b)

Figure 2. Plot of mean and variance of monomer and
dimer concentration with time. Panel (a) is the time series of
mean and panel (b) is that of variance. Solid line denotes the
profile for literature value of rate parameters and open circles
represent the profile for optimized set. Red and blue colours
depict monomer and dimer, respectively.

4. Sensitivity analysis

Generally, in any chemical or biochemical network, not
all the parameters hold equal priority. A sensitivity ana-
lysis is conducted to determine which input parameters
contribute the most to the output variable, which para-
meters are insignificant, whether the input parameters do
interact among themselves, whether the interaction is
physically explainable, and, after all, to search for the
optimal regions within the parameters space for use in
a subsequent calibration study. One can say, a system is
sensitive with respect to a parameter if a small change
to this parameter affects the output abruptly.

For a quantitative estimation of the sensitivity of
the rate parameters, we use a variance-based sensiti-
vity analysis test. The idea of this analysis is taken from
Saltelli et al.34 They report a comparative discussion
of different sensitivity analysis techniques in order to
reduce the computational cost of running the model.
The main idea was developed by Cukier and cowork-
ers36,37 in the 1970, and was known as Fourier ampli-
tude sensitivity test (FAST). In the present study, we
adopt the implementation of the FAST-based sensitivity
test as used by Saltelli et al. 34

The variance in output with input parameter set hav-
ing one parameter fixed at some value is defined by the
term VX−i (Y |Xi = X ∗

i ), where Y is the output factor
and the subscript X−i of V denotes that the variance
is taken over all other input parameters other than Xi

which is fixed at X ∗
i . This is generally less than the vari-

ance with fully random input set V (Y ), but may depend
on the magnitude of the fixed parameter. To remove this
type of parameter dependence, an average of the vari-
ance over the different values of the fixed parameter is
estimated by EXi (VX−i (Y |Xi = X ∗

i )). We may write the
total variance V (Y ) as follows:34

V (Y ) = EXi

(

VX−i (Y |Xi)
) + VXi

(

EX−i (Y |Xi)
)

. (9)

Thus a FAST-based sensitivity index is defined simply
as

Si = VXi

(

EX−i (Y |Xi)
)

V (Y )
. (10)

Using the above-mentioned idea, we discuss the sensi-
tivity of the model parameters in the next section.

5. Results and discussion

Our main focus is to evaluate the optimal set of kinetic
parameters for the scheme given by eqs (1a–1e) of pro-
tein dimerization. All stochastic optimizers: SA, GA,
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Table 1. Comparison of kinetic parameter values. Units of
k1, k2, k3, k4 and k5 are nM min−1, min−1, nM−1 min−1,
min−1 and min−1, respectively.

Simulation

Parameter Literature38 SA GA PT

k1 50.0 49.42 49.41 49.44
k2 1.02 1.007 1.008 1.009
k3 0.01 0.009 0.009 0.009
k4 0.1 0.10 0.099 0.098
k5 0.2 0.019 0.019 0.019

and PT, turned out to decipher the optimal set of kinetic
parameters. Rate constants obtained from simulations
are in good proximity to the literature value. The opti-
mized parameter values (average of the five runs) in
each simulation procedure, as well as the literature
values38 are shown in table 1.

We followed the approach to the converged results
for the five kinetic parameters of the protein dimeriza-
tion model in three different schemes. The results are
shown in figure 3. For each technique, we show five
simulation runs, as shown in the graph. The literature
value of each parameter is shown as black dashed line.

The parameters k1 and k2 show a good convergence
within a very short range around the literature value,
but the other rate parameters show a spread (for the rea-
son, see the discussion below). It is also evident from
figure 3 that GA and PT runs take fewer steps (about
60 to 70) to converge to reasonably convincing solu-
tions, while SA takes about 100 steps. However, in
terms of computational time required, GA seems to be
the most efficient method followed by SA and PT. This
is expected on theoretical lines, as GA and PT process
a number of trial solutions simultaneously, while SA
improves on a single starting solution.

Let us now study sensitivity analysis to classify the
most delicate rate constants. We apply a fixed perturba-
tion (5%) onto a given rate constants at a time, keep-
ing the other rate parameters unperturbed with respect
to the literature value. We then use SSA to return the
equilibrium probability distribution for the perturbed
run. By comparing the discussed distribution func-
tion with the theoretical one, we qualitatively judge
the sensitivity of the rate parameters (plots shown in
figure 4). In our case, the dimerization kinetics is more
sensitive to k1 and k2 than the others. This result justifies
the observation in figure 3. The more sensitive para-
meters should converge to a small range around the tar-
get value, whereas relatively less sensitive ones exhibit
a wider spread at the end of optimization.

Figure 3. (colour online) Kinetic parameters (k1, k2, k3, k4, and k5) versus number
of SA, GA and PT steps. Black dashed line represents values of kinetic parameters
taken from Adalsteinsson et al., 38 while the step-like lines (red, blue, green, cyan and
magenta) are the results of five different SA, GA, and PT runs.
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(a) (b)

(d) (e)

(c)

Figure 4. (colour online) Expected probability distribution (solid line) and distribu-
tion obtained from SSA by perturbing one parameter at a time (dashed lines). Red and
blue represent monomer and dimer distributions, respectively. In panels (a) to (e), the
perturbed parameters were respectively, k1, k2, k3, k4 and k5.

Sensitivity index (Ski ) for the output monomer and
dimer concentrations are calculated separately with
respect to each input parameter at different time for the

protein dimerization kinetics. Figure 5 depicts the plot
of sensitivity index against time. Higher sensitivity for a
particular parameter indicates that the system becomes

Figure 5. (colour online) Sensitivity index, Ski for i = 1 − 5 versus time
for monomers and dimers. The red, green, blue, magenta and cyan coloured
lines depict k1, k2, k3, k4, k5, respectively.
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Figure 6. (colour online) Optimization profile against SA, GA, and PT
steps (in log scale). Red line: Simulation with equal weight to all the kinetic
parameters. Green line: Biased simulation by 60% weight on k1 and k2,
Blue line: biased simulation by 80% weight on k1 and k2.

more sensitive to that parameter than the others. Our
results depict that both the monomer and dimer concen-
trations are more sensitive with respect to k1 and k2 than
to k3, k4, and k5. Figure 5 also shows that as a function of
time, Sk1 decreases and Sk2 increases, and a crossover of
sensitivity occurs. This crossover reflects the physical
idea that initially the system becomes sensitive to the
rate constant, which produces monomers from a source.
As time progresses, due to adequacy of monomer con-
centrations, sensitivity index shifts to the reverse rate
constant of the reaction. This type of crossover is also
observed on a smaller scale in k3 and k4.

Since k1 and k2 are reflected to be the more sensi-
tive parameters, they have to be explored more than
the rest of the rate parameters. This idea is incorpo-
rated during the parameter evolution by using stochastic
optimization techniques. If we assign higher probabili-
ty to the sensitive parameters, to be sampled than the
others, convergence occurs rapidly during optimization.
Figure 6 clearly shows that on applying 80% weight on
k1 and k2 to be sampled (20% weight on k3, k4 and k5),
the cost function falls more rapidly than the sampling
with 60% weight on k1 and k2 (40% weight on k3, k4

and k5). This in turn is obviously faster than a run, in
which equal weight is assigned for sampling of each
rate parameter. The trends are in a similar line for runs
involving SA, GA and PT. This strategy of doing biased
optimization runs, involving higher weight to sample
more sensitive parameters, will certainly contribute to
the decrease in computational cost.

It is also important to conclude this section with an
idea of the robustness of the three used numerical algo-
rithms in deciphering the rate constants. In the present
study, we have selected the initial trail set of rate con-
stants from a Gaussian distribution, whose peak corres-
ponds to the literature value and a half width of 10% of
the respective rate constant. This is a moderately large
perturbation. Convergence from this initial set is quite
close to the values reported in literature. As we have
also done a sensitivity analysis on each of the five cal-
culated reaction rate parameters, a check can also be
made on the relative importance/rigidity that an evalu-
ated value can have. Lesser the sensitivity of a particu-
lar data, greater the spread of the reported value, even
while matching the correct dimer-monomer distribution
profile.

6. Conclusion

We have shown that stochastic optimization techniques
in conjunction with SSA can help determining kinetic
parameters in multi-step kinetic schemes. All the three
optimizers (SA, GA and PT) perform equally well
to predict the values of the rate constants. We have
also shown that an optimization study guided by find-
ings from sensitivity analysis can help us distinguish
between the parameters based on its importance and if
these are incorporated into the optimization, a quicker
convergence can be achieved. This strategy of initially
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doing a sensitivity analysis and segregating the rate
parameters into zones of importance and then sub-
sequently using stochastic optimization techniques to
decipher them can be an important strategy for study-
ing kinetics in complex biochemical networks, where
rate parameters can be numerous. The number of ordi-
nary differential equations to be solved in such cases
are also very large. An unbiased strategy of allocating
equal samplings to each and every rate parameter will
make the process of finding the solution, computation-
ally costly and tedious. A stochastic search in conjunc-
tion with the sensitivity analysis will be much more
efficient.
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Appendix A

To generate a real random number x , which follows a
probability density function P(x), one has to consider
another function F(x).

F(x) =
x

∫

−∞
P(x ′) dx ′.

F(x) is the probability distribution function which sat-
isfy

F(x) = r,

where r is basically a random number from the uniform
distribution between 0 and 1.

Then,

x = F−1 (r) .

In eq. (5) τ (a real random number), follows the proba-
bility density function P(τ ). 1,2

P(τ ) = a0 exp (−a0τ) for 0 ≤ τ ≤ ∞
P(τ ) = 0 elsewhere.

Now,

F(τ ) =
τ

∫

0

P(τ ′) dτ ′

r = 1 − exp (−a0τ).

(1–r) is also a random number, thus τ becomes

τ = 1

a0
In

1

r
.
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