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Abstract
We analyse the first-passage properties of two random walkers confined to a
finite one-dimensional domain. For the case of absorbing boundaries at the
endpoints of the interval, we derive the probability that the two particles meet
before either one of them becomes absorbed at one of the boundaries. For the
case of reflecting boundaries, we obtain the mean first encounter time of the
two particles. Our approach leads to closed-form expressions that are more
easily tractable than a previously derived solution in terms of the Weierstrass’
elliptic function.

PACS numbers: 05.40.−a, 02.50.−r, 82.20.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The properties of the first passage, i.e. the crossing of a given threshold value in a stochastic
process, are key clues to the quantitative understanding of diverse dynamic systems [1]. For
instance, the distribution of first-passage times and, if it exists, the associated mean first-
passage time are relevant quantities for the outflux of tracer substances from a catchment in
subsurface hydrology [2], the one-dimensional diffusion of proteins along a DNA molecule [3]
or the combined one- and three-dimensional search in facilitated diffusion in gene regulation
[4], up to the crossing of preset prices in economic contexts [5]. The theory of first passage
has recently experienced some important advances, in particular, concerning the behaviour
of a single random walker in a confined environment [6, 7]. We note that the concept of

1751-8113/11/395005+10$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/44/39/395005
mailto:metz@ph.tum.de
http://stacks.iop.org/JPhysA/44/395005


J. Phys. A: Math. Theor. 44 (2011) 395005 V Tejedor et al

first passage can be extended to generalized diffusion processes [8], e.g Lévy flights [9] or
subdiffusion [10]. For subdiffusive continuous time random walks the results obtained for the
Markovian case can be extended by subordination arguments [11].

A classical example for the application of first-passage concepts for encounter processes
is the Smoluchowski picture of the diffusion regulation of bimolecular chemical reactions
upon mutual diffusional encounter of the two molecular reactants in a three-dimensional
liquid environment [12]. However, there are many cases in which the diffusional encounter of
particles in a one-dimensional (or pseudo one-dimensional) environment becomes relevant. To
name but a few examples, we mention the diffusional sliding motion of proteins or enzymes
on DNA [3, 13], the diffusion of chemical reactants in the nanoconfinement of fluidic channels
[14] and the relative motion of two aminoacids of a protein along the one-dimensional reaction
coordinate [15].

In an unconfined environment, the encounter problem of two random walkers reduces to
the consideration of the relative coordinate of the two walkers, with a diffusivity that equals the
sum of the two individual diffusion constants. Similar to this unconfined case, for the diffusion
of two particles on a finite domain with periodic boundary conditions, we may assume that
one of the two walkers is fixed, and that the other diffuses with diffusivity D = 2D1, where
D1 is the diffusion constant of a single walker. The problem is therefore equivalent to the
first-passage problem for a single random walker, such that the mean first encounter time
becomes

〈T 〉 = 1

2D
d(L − d), (1)

where d denotes the initial distance between the two random walkers and L the interval size.
If, however, we consider reflective or absorbing boundaries at the interval endpoints, the

problem becomes more involved despite the seeming simplicity of this process [16]. Indeed, we
can no longer reduce the two-walker problem to an effective one-walker scenario, because we
now need to consider two free parameters to characterize the system, for instance, the position
of one walker and its distance to the second walker, instead of only the mutual distance in the
unbounded or periodic case. We here consider two cases of continuous time Brownian motion:
first, the probability PM that the random walkers meet before one of them is removed at the
absorbing interval boundaries; and second, the typical encounter time of the two walkers in
the presence of reflective boundaries. Somewhat surprisingly, these two problems are quite
hard to solve. An analytic solution for the former problem (continuous time) has only recently
been presented [17]:

PM(x1, x2) = − 2

π
�

{
log

[
℘

(
ω(x2 + ix1)

L
√

8

)]}
. (2)

Here, ω = ∫ ∞
1 (x(x−1))−3/4dx ≈ 5.244, i = √−1, and the initial positions of the two walkers

are x1 and x2 [17]. In equation (2),℘ represents the Weierstrass elliptic function satisfying the
differential equation

℘′(x)2 = 4℘3(x) −℘(x). (3)

The computation of the imaginary part of the logarithm of a complex number may become
difficult and quite time consuming numerically, and elliptic functions are often cumbersome to
deal with in analytic calculations. It would therefore be desirable to find a simpler expression
for this problem. In the following we show that weak approximations lead to closed-form
expressions for the relevant quantities in terms of trigonometric, hyperbolic and logarithmic
functions. The high accuracy of these rather simple analytical results is corroborated by
numerical simulations.
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The paper is structured as follows. In the next section, we calculate the encounter
probability of the two walkers before being annihilated by hitting the absorbing walls. We
then proceed to the scenario of first encounter in the opposite case of reflecting boundaries,
before concluding in section 4.

2. Encounter probability

We first consider the case of two absorbing boundaries and calculate the probability for
encounter of the two walkers before either one of them becomes removed on hitting a boundary.
To this end we rephrase the problem of two walkers in a one-dimensional domain by a single
walker in a finite two-dimensional domain of size L×L. We then seek the probability that, after
starting from the point (x1, x2), this single random walker on the two-dimensional domain
crosses the diagonal x = y, before touching the boundaries for the two coordinates, x ∈ {0, L}
or y ∈ {0, L}. Without loss of generality, we assume that x1 > x2.

As the process is terminated when the two-dimensional random walker crosses the
diagonal x = y, we use the method of images to determine the associated probability. First,
we compute the probability that a two-dimensional random walker with diffusion coefficient
D = 2D1, where D1 is the diffusion constant of a single one-dimensional walker, hits a given
wall in an L × L square, whose boundaries are absorbing. The probability P(x, y, t|x1, x2) to
be at position (x, y) at time t starting from (x1, x2) at t = 0 becomes

P(x, y, t|x1, x2) = 4

L2

∞∑
k=1

∞∑
l=1

sin

(
kxπ

L

)
sin

(
kx1π

L

)
sin

(
lyπ

L

)
sin

(
lx2π

L

)

× exp

(
− (k2 + l2)Dπ2t

L2

)
(4)

in terms of the eigenmode expansion. The probability Prwall(x = L|x1, x2) to hit the wall at
x = L starting from (x1, x2) at t = 0 is then calculated as

Prwall(x = L|x1, x2) = −
∫ ∞

0

∫ L

y=0
D

∂P(x, y, t|x1, x2)

∂x

∣∣∣∣
x=L

dy dt

= − 4

π2

∞∑
k=1

∞∑
l=1

(−1)k k

l
(1 − (−1)l ) sin

(
kx1π

L

)
sin

(
lx2π

L

)
1

k2 + l2

= − 8

π2

∞∑
l=0

sin

(
(2l + 1)x2π

L

)
2l + 1

∞∑
k=1

(−1)kk

k2 + (2l + 1)2
sin

(
kx1π

L

)
. (5)

The term in −D(∂P/∂x)(x, y, t) is the probability flux in the +x direction, at point (x, y) and
time t (Fick’s first law). We then exploit the Fourier expansion of the sinh function (more
precisely, the periodic function equal to sinh between −π and π ),

sinh(ax)

sinh(aπ)
= − 2

π

∞∑
n=1

(−1)nn

a2 + n2
sin(nx), (6)

to rewrite the probability Prwall to hit the wall at x = L:

Prwall(x = L|x1, x2) = 4

π

∞∑
l=0

sin
(

(2l+1)x2π

L

)
2l + 1

sinh
(

(2l+1)x1π

L

)
sinh((2l + 1)π )

. (7)

This expression simplifies when we introduce the approximation sinh((2l + 1)π ) ≈
exp((2l + 1)π )/2, leading to
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Prwall(x = L|x1, x2) ≈ 8

π

∞∑
l=0

sin
(

(2l+1)x2π

L

)
2l + 1

sinh

(
(2l + 1)x1π

L

)
× exp (−(2l + 1)π )

= 2

iπ

∞∑
l=0

(
exp

(
π
L (ix2 + x1 − L)

)2l+1

2l + 1
+ exp

(
π
L (−ix2 − x1 − L)

)2l+1

2l + 1

− exp
(

π
L (ix2 − x1 − L)

)2l+1

2l + 1
− exp

(
π
L (−ix2 + x1 − L)

)2l+1

2l + 1

)

= 1

iπ

(
ln

(
1 + exp

(
π
L (ix2 + x1 − L)

)
1 − exp

(
π
L (ix2 + x1 − L)

) 1 − exp
(

π
L (−ix2 + x1 − L)

)
1 + exp

(
π
L (−ix2 + x1 − L)

)
)

− ln

(
1 + exp

(
π
L (ix2 − x1 − L)

)
1 − exp

(
π
L (ix2 − x1 − L)

) 1 − exp
(

π
L (−ix2 − x1 − L)

)
1 + exp

(
π
L (−ix2 − x1 − L)

)
))

= 1

iπ

⎛
⎜⎜⎝ln

⎛
⎜⎜⎝

1 + i
sin(

πx2
L )

sinh
(

π(L−x1 )

L

)

1 − i
sin(

πx2
L )

sinh
(

π(L−x1 )

L

)

⎞
⎟⎟⎠ − ln

⎛
⎜⎜⎝

1 + i
sin(

πx2
L )

sinh
(

π(L+x1 )

L

)
1 − i

sin(
πx2

L )

sinh
(

π(L+x1 )

L

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠

= 2

π

(
arctan

(
sin

(
πx2

L

)
sinh

(
π(L−x1 )

L

)
)

− arctan

(
sin

(
πx2

L

)
sinh

(
π(L+x1 )

L

)
))

. (8)

The maximal deviation of the approximate result (8) from the exact expression is around 0.2%.
Consistently, equation (8) vanishes at x1 = 0, x2 = 0, or x2 = L. At x1 = L, expression (8) is
approximately 1.

To link this result with the meeting probability of two random walkers in a one-dimensional
domain with absorbing boundaries, we consider a random walker on the two-dimensional L×L
square with diffusion coefficient D, starting from (x1, x2). Since the process terminates when
x = y, the line x = y is considered absorbing. We use the images method to obtain the
propagator PT (x, y, t|x1, x2) with absorbing boundary conditions on the lines x = y, x = L and
y = 0 in terms of the propagator P determined above with absorbing conditions only on the
square boundary:

PT (x, y, t|x1, x2) = P(x, y, t|x1, x2) − P(x, y, t|x2, x1). (9)

This expression is a direct generalization of the image method for one walker [1]. The
probability PM(x1, x2) to reach the line x = y before the walls y = 0 and x = L starting
from (x1, x2) at t = 0 is 1 minus the probability to reach the border x = L or y = 0. Using
equations (9) and (8) to compute these probabilities, PM(x1, x2) is thus given by the sum

PM(x1, x2) = 1 − (Prwall(x = L|x1, x2) − Prwall(x = L|x2, x1)

+ Prwall(y = 0|x1, x2) − Prwall(y = 0|x2, x1))

= 1 − (Prwall(x = L|x1, x2) − Prwall(x = 0|x1, x2)

+ Prwall(y = 0|x1, x2) − Prwall(y = L|x1, x2))

= 2 (Prwall(x = 0|x1, x2) + Prwall(y = L|x1, x2))

= 8

π

⎛
⎝ ∞∑

l=0

sin
(

(2l+1)x2π

L

)
2l + 1

sinh
(

(2l+1)(L−x1 )π

L

)
sinh ((2l + 1)π )

+
∞∑

l=0

sin
(

(2l+1)x1π

L

)
2l + 1

sinh
(

(2l+1)x2π

L

)
sinh ((2l + 1)π )

)
. (10)

4



J. Phys. A: Math. Theor. 44 (2011) 395005 V Tejedor et al

0 0.1 0.2 0.3 0.4 0.5
x

2
/L

0

0.2

0.4

0.6

0.8

1

P M
(x

1,x
2)

0 0.1 0.2 0.3 0.4 0.5
x

2
/L

-0.2

-0.1

0

Δ(
P M

)/
P M

 (
%

)

Figure 1. Encounter probability of two random walkers on the interval [0, 1], initially placed at
(x1, x2), where x1 = 0.5 and x2 varies between 0 and 0.5. The simulation is in discrete time, on a
segment of size L = 100, where the random walker makes Gaussian steps of variance σ = 1. We
compare simulation results (black circles) with the approximate result given by equation (11) (red
crosses) and the exact result from equation (10) (blue line). The inset shows the relative difference
between the approximate and exact results. The error is of the same order of magnitude for all x2
(below 0.2%).

Note that to pass from the first to the second equality we used the symmetry of the square
geometry. Equation (10) is an exact equivalent to the expression in [17]. Our result has
the advantage of being much easier to compute numerically, for the occurrence of simple
trigonometric functions. Moreover, as before we can approximate this expression by the
arctan function, yielding

PM(x1, x2) ≈ 4

π

(
arctan

(
sin

(
πx2

L

)
sinh

(
πx1

L

)
)

− arctan

(
sin

(
πx2

L

)
sinh

(
π(2L−x1 )

L

)
)

+ arctan

(
sin

(
πx1

L

)
sinh

(
π(L−x2 )

L

)
)

− arctan

(
sin

(
πx1

L

)
sinh

(
π(L+x2 )

L

)
))

. (11)

This is the first main result of this study.
Figures 1 and 2 show excellent agreement between the exact and the approximate

formula of equations (10) and (11), as well as with numerical simulations of the encounter
process. The approximate formula provided by equation (11) obviously provides an excellent
approximation. Its numerical evaluation is significantly quicker than the exact result involving
the Weierstrass elliptic function with complex argument. Moreover, the accuracy is more than
sufficient for most purposes: the relative error is always smaller than 0.2%. The approximate
result is far easier to handle analytically than the exact expression of equation (2) proposed in
[17], and the dependence on the geometrical parameters is more explicit.

3. First encounter time

We now consider the analogous problem with reflective boundaries at the endpoints of the
one-dimensional interval: the orthogonal speed of the continuous random walker is inverted
when hitting a boundary. We determine the mean first encounter time, namely the average
of the first time when the two random walkers encounter each other. To compute this time,
we again transform the problem of two random walkers in the one-dimensional domain into

5
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Figure 2. Encounter probability of two random walkers initially placed at (x1, x2), where x1 = 0.9
and x2 varies between 0 and 0.9. The simulation is in discrete time, on a segment of size L = 100,
where the random walker makes Gaussian steps of variance σ = 1. We compare the simulation
results (black circles) with the approximate result given by equation (11) (red crosses) and the exact
result, equation (10) (blue line). The inset shows the relative difference between the approximate
and the exact results (red line). The error is of the same order of magnitude for all x2 (below 0.2%).

L
L√2

Figure 3. Symmetry used to simplify the first encounter problem: the first-passage time to the
diagonal on a triangle is equivalent to a first exit time on a

√
2L × √

2L square.

a two-dimensional single-walker problem. This two-dimensional walker moves on one half
of the square domain L × L, separated by the diagonal. In this half-square, the diagonal is
absorbing while the two equilateral edges are reflecting. As shown in figure 3, we transform
by symmetry this problem to the first exit time on a

√
2L × √

2L square, where, if we take
x1 > x2, the initial coordinates are (x0, y0) = ((x1 − x2)/

√
2, (x1 + x2)/

√
2).

We start with the propagator on the
√

2L × √
2L square:

P(x, y, t|x0, y0) = 2

L2

∞∑
k=1

∞∑
l=1

sin

(
kxπ√

2L

)
sin

(
kx0π√

2L

)
sin

(
lyπ√

2L

)

× sin

(
ly0π√

2L

)
exp

(
− (k2 + l2)Dπ2t

2L2

)
. (12)

The survival probability, namely the probability S (t|x0, y0) that at time t, a continuous random
walker starting from (x0, y0) at t = 0 has not hit any boundary, becomes
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Figure 4. Mean first encounter time 〈T 〉 between two random walkers initially placed at (x1, x2)

in a one-dimensional domain, where x1 = 0.5, and x2 varies between 0 and 0.5. The simulation is
in discrete time, on a segment of size L = 100, where the random walker makes Gaussian steps of
variance σ = 1. We compare the simulation results (black circles) with the exact result, equation
(14) (red line).

S (t|x0, y0) =
∫ √

2L

0

∫ √
2L

0
P(x, y, t|x0, y0)dx dy = 16

π2

∞∑
k=0

∞∑
l=0

sin
(

(2k+1)x0π√
2L

)
2k + 1

sin
(

(2l+1)y0π√
2L

)
2l + 1

× exp

(
− ((2k + 1)2 + (2l + 1)2)Dπ2t

2L2

)
, (13)

from which we deduce the mean first encounter time 〈T 〉(x0, y0) as function of the initial
positions x0 and y0:

〈T 〉(x0, y0) =
∫ ∞

0
S (t|x0, y0) dt

= 32L2

Dπ4

∞∑
k=0

∞∑
l=0

sin
(

(2k+1)x0π√
2L

)
2k + 1

sin
(

(2l+1)y0π√
2L

)
2l + 1

1

(2k + 1)2 + (2l + 1)2

= 32L2

Dπ4

∞∑
k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

∞∑
l=0

(
sin

(
(2l+1)y0π√

2L

)
2l + 1

−
(2l + 1) sin

(
(2l+1)y0π√

2L

)
(2k + 1)2 + (2l + 1)2

)

= 8L2

Dπ3

∞∑
k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

⎛
⎝1 −

sinh
(

(2k+1)y0π√
2L

) + sinh
(

(2k+1)(
√

2L−y0 )π√
2L

)
sinh((2k + 1)π )

⎞
⎠

= x0

2D
(
√

2L − x0) − 8L2

Dπ3

∞∑
k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

×
sinh

(
(2k+1)y0π√

2L

) + sinh
(

(2k+1)(
√

2L−y0)π√
2L

)
sinh((2k + 1)π )

. (14)

Here, we made use of the expansion of the sinh function. The exact result (14) shows perfect
agreement with numerical simulations, as demonstrated in figure 4.

In equation (14) the first term is the mean first exit time of a one-dimensional random
walker confined to a domain of size

√
2L, with diffusion coefficient D. The second term

is the correction in a square domain. We approximate this second term in some limits. For
instance, when the two particles are initially near a corner of the one-dimensional domain, i.e.
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x2 + x1 
 L, such that y0/L 
 1 and x0/L 
 1, we have

∞∑
k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

sinh
(

(2k+1)y0π√
2L

) + sinh
(

(2k+1)(
√

2L−y0 )π√
2L

)
sinh ((2k + 1)π )

≈
∞∑

k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

exp

(
− (2k + 1)y0π√

2L

)
. (15)

This expression can be simplified in the limit x0/L 
 1, using
∞∑

k=1

sin (kx)

k3
exp (−ky) = xLi2(exp(−y)) + O(x3), (16)

where Li2 is the dilogarithm defined as

Li2(z) =
∞∑

k=0

zk

k2
. (17)

The series expansion of Li2(z) around 1− is

Li2(z) = π2

6
+ (1 − ln(1 − z))(z − 1) + O((z − 1)2). (18)

We thus obtain
∞∑

k=0

sin
(

(2k+1)x0π√
2L

)
(2k + 1)3

sinh
(

(2k+1)y0π√
2L

) + sinh
(

(2k+1)(
√

2L−y0 )π√
2L

)
sinh ((2k + 1)π )

≈ x0π

2
√

2L

(
π2

4
+

(
ln

(
y0π√

2L

)
− 1 − ln(2)

)
y0π√

2L

)
. (19)

Thus, when both particles are initially close to an endpoint of the interval, we find

〈T 〉(x0, y0) ≈ 2x0y0

Dπ

(
1 + ln(2) − ln

(
y0π√

2L

))
− x2

0

2D
. (20)

A similar approach leads to the same result when
√

2L − y0 
 L and x0/L 
 1, if we replace
y0 by

√
2L − y0. In the original variables we rewrite the previous expression as follows:

〈T 〉(x1, x2) ≈ x2
1 − x2

2

Dπ

(
1 + ln(2) − ln

(
(x1 + x2)π

2L

))
− (x1 − x2)

2

4D
. (21)

Figure 5 demonstrates excellent agreement with the simulations over a quite large range.
Finally, we calculate the associated first-passage density pT (x0, y0, t). It directly follows

from the survival probability S (t|x0, y0) in equation (13), through

pT (x0, y0, t) = −∂S (t|x0, y0)

∂t

= 8D

L2

∞∑
k=0

∞∑
l=0

(
2k + 1

2l + 1
+ 2l + 1

2k + 1

)
sin

(
(2k + 1)x0π

L
√

2

)
sin

(
(2l + 1)y0π

L
√

2

)

× exp

(
− ((2k + 1)2 + (2l + 1)2)Dπ2t

2L2

)
. (22)

Figure 6 shows that only the first few terms of this infinite sum are sufficient to reproduce very
accurately the simulations results. We observe that the leading term is given by the exponential

pT (x0, y0, t) ∼ 16D

L2
sin

(
x0π√

2L

)
sin

(
y0π√

2L

)
exp

(
−Dπ2t

L2

)
. (23)
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Figure 5. Mean first encounter time 〈T 〉 between two random walkers initially placed at (x1, x2)

on a one-dimensional domain, where x1 = 0.95 and x2 varies between 0 and 0.95. The simulation
is in discrete time, on a segment of size L = 100, where the random walker makes Gaussian steps
of variance σ = 1. We compare the simulation results (black circles) with the exact result given
by equation (14) (red line) and the approximation in equation (21) (blue dashed line). The inset
shows a zoom into the area around 0.95, where the approximation is valid (

√
2L − y0 
 L and

x0/L 
 1).

0 0.5 1
t/L

2

0

1×10
-4

2×10
-4

3×10
-4

p T

Figure 6. First encounter time distribution pT of two random walkers on a finite one-dimensional
domain, initially positioned at (x1, x2), where x1 = 0 and x2 = 0.5, as a function of time t. The
simulation is in discrete time, on a segment of size L = 100, where the random walker makes
Gaussian steps of variance σ = 1. We compare the simulations results (black circles) with the
leading exponential of the exact result given by equation (22) (red line) and the first ten terms of
the same expression (dashed blue line).

4. Conclusions

We obtained a simple formula for the encounter probability of two random walkers on a
finite one-dimensional domain with absorbing boundary conditions at the interval endpoints.
The resulting infinite sum can be approximated by analytical functions to high accuracy. The
obtained result facilitates significantly the analytical and numerical handling of this problem,
compared to the rigorous mathematical result. For the first encounter time of two random
walkers in the presence of reflective boundary conditions, analogous results are presented and
approximations are obtained. While the calculations are performed in continuous time, the
simulations are performed in discrete time. The excellent agreement between these corroborate

9



J. Phys. A: Math. Theor. 44 (2011) 395005 V Tejedor et al

the equivalence of both approaches for the case of Brownian motion. We expect that this
contribution will be useful in a broad range of applications of first passage theories.
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