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Brownian motion

V Tejedor1,2, O Bénichou1, Ralf Metzler2,3 and R Voituriez1
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Abstract
We derive a functional equation for the mean first-passage time (MFPT) of
a generic self-similar Markovian continuous process to a target in a one-
dimensional domain and obtain its exact solution. We show that the obtained
expression of the MFPT for continuous processes is actually different from
the large system size limit of the MFPT for discrete jump processes allowing
leapovers. In the case considered here, the asymptotic MFPT admits non-
vanishing corrections, which we call residual MFPT. The case of Lévy flights
with diverging variance of jump lengths is investigated in detail, in particular,
with respect to the associated leapover behavior. We also show numerically that
our results apply with good accuracy to fractional Brownian motion, despite
its non-Markovian nature.

PACS number: 05.40.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The first-passage time (FPT) of a random walker to a target point is an important concept for
the modeling and interpretation of stochastic processes [1, 2]. This interest in the concept of
FPTs is motivated by the crucial role played by FPTs in various contexts, including diffusion
limited chemical reactions [3–5], the spreading of diseases [6], or target search processes
[7–10]. A general formalism for the calculation of the mean first-passage time (MFPT) of
a scale-invariant random process rt in a confined domain of volume V has recently been
derived in the large V limit in [11, 12], and the full distribution of the FPT has been obtained
[13]. These results highlight the asymptotic dependence of the MFPT 〈T〉 and its higher
order moments on both the source-to-target distance r and the confinement volume in the case

1751-8113/11/255003+15$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/44/25/255003
mailto:voiturie@lptmc.jussieu.fr
http://stacks.iop.org/JPhysA/44/255003


J. Phys. A: Math. Theor. 44 (2011) 255003 V Tejedor et al

of scale-invariant processes, which can be characterized by the walk dimension dw (defined
by

〈
r2
t

〉 ∝ t2/dw ) and the fractal dimension df of the support of the random process [14]. In
particular, in the case of compact (i.e., recurrent) processes, for which dw > df , it was shown
that

lim
V →∞

〈T〉
V

= Crdw−df , (1)

where only the constant C depends on the process. For a Brownian walker the first passage
at a given point x, which hereafter denotes the first arrival at exactly x, is equivalent to the
first crossing of the value x. This is not generally true. For instance, in the case of Lévy
flights with a scale-free distribution of jump lengths [15–17], pronounced leapovers across the
threshold value occur. Thus, the first passage at the point x becomes considerably less likely
than the first crossing of the value x [18] (see also [19] for the case of one-sided Lévy flights).
For Markovian Lévy flights, the first crossing falls into the class of processes governed by the
Sparre Andersen universality [20].

Discrete time Markovian jump processes are defined by an elementary jump distribution
w(r), which, at each discrete time step n, renders the probability that the random walker makes
a jump of length r, which we here assume to be discrete. For a generic distribution w, the
searcher is in principle allowed to jump across the target, and performs what we define here as
a leapover, as opposed to the case of nearest neighbor random walks. In the case of Euclidean
spaces, symmetric jump processes are subject to the generalized central limit theorem [21, 22]
and have a well-defined continuous limit which is scale invariant. More explicitly, let P(r, n)

denote the discrete time and space propagator of the process in infinite space, starting from
r = 0 at time n = 0. Then we know that for the rescaled quantity

pε(x = rε, t = nεdw ) ≡ 1

ε
P (r, n), (2)

the convergence to

lim
ε→0

pε(x = rε, t = nεdw ) = p(x, t) ≡ t−df /dwg(x/t1/dw ) (3)

is fulfilled in the continuum limit ε → 0 with x and t fixed by virtue of the central limit
theorem. Here g is a scaling function. If the jump distribution w(r) has a second moment 〈r2〉,
the limit process is a Brownian motion with dw = 2 and g is Gaussian; otherwise the limit
process is of Lévy stable type with 0 < dw < 2, and g is a Lévy stable law of index dw. In this
continuous limit the asymptotic theory applies [11], for compact processes yielding the exact
asymptotic form (1), where the constant C can be explicitly determined as a function of g.
These results show in particular that the MFPT in the continuous limit becomes independent
of the existence of leapovers.

In terms of the variables r and n of the discrete jump process, the continuum limit is
equivalent to taking both r and n large, with rdw/n fixed. Hence, for discrete jump processes,
equation (1) produces actually only the leading term of a large r expansion, and one should
write more precisely

lim
V →∞

〈T〉
V

= Brdw−df + o(rdw−df ). (4)

We show in this paper that the subleading term of this expansion actually strongly depends on
the existence of leapovers and may yield non-vanishing corrections to the rescaled MFPT. This
residual MFPT (not to be confused with the residual distribution that appears in the context of
renewal processes) can have important consequences in the context of both search processes
and numerical simulations of FPTs of random walks.
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As a specific important example we discuss extensively the effect of leapovers on the
MFPT in the context of one-dimensional (1D) Markov jump processes. By means of a
functional equation, we first derive an exact expression of the MFPT for continuous time
and space scale-invariant Markov processes valid for any starting position of the walker and
confining domain size. Next, using the method of pseudo Green functions, we present an
exact expression of the MFPT for arbitrary discrete time 1D Markov jump processes, which
was previously derived in [1, 23]. We show that in the large volume limit, the leading term
of the MFPT is the expected continuous limit of equation (1), and we calculate exactly the
subleading term of this expansion. We show that this correction is indeed crucial in the case
of random walks with leapovers, since it does not vanish in the limit L → ∞ and r → 0.

We consider a walker performing random independent jumps in a confined 1D system of
size L (with periodic boundary conditions) and address the question of determining its MFPT
〈TT S〉 ≡ 〈T(r, L)〉 to a given target site T as a function of its starting site S, where r stands
for the source-to-target distance |ST |. To proceed, we denote by wji the jump probability
from discrete site i to j , where wji is assumed to be symmetric (wji = wij ) and translation-
invariant (wji is a function |i − j | only). It is easily seen that the confined problem with
periodic boundary conditions is equivalent to an infinite line with regularly spaced targets at
positions kL with k ∈ Z, a property which will be used below.

2. Continuous time and space scale-invariant jump processes

In this section, we derive an exact expression for the MFPT of a 1D scale-invariant Markov
jump process in the limit of continuous space and time. We start from the definition in discrete
time and space given above, and pass to the following classical backward equation for the
MFPT [2]:

∞∑
i=−∞

〈TT i〉(wiS − δiS) ≡ �S〈TT S〉 = −1, (5)

completed by the condition 〈T(r = kL,L)〉 = 0 for all k ∈ Z. It is easily seen that the
following form of the MFPT satisfies both equation (5) and the boundary conditions above:

〈T(r, L)〉 = 〈T(r, 2L)〉 + 〈T(r + L, 2L)〉 − 〈T(L, 2L)〉
2

. (6)

Note that by definition, 〈T(r, L)〉 is L-periodic. This provides a functional equation, which
can be solved as follows. We assume that the jump process has a well-defined, self-similar
continuous limit, characterized by a walk dimension dw. We then define the continuous limit
of the MFPT as

θ(y, l) = lim
ε→0

εdw 〈T(r = y/ε, L = l/ε)〉, (7)

where the starting position y and the system size l are fixed. In particular, we assume that the
process is compact (dw > df = 1), such that in the continuous limit the MFPT to a point-like
target is finite. In this limit self-similarity implies

θ(y, l) = ldwθ(x = y/l, 1), (8)

and therefore

θ(x, 1) = 2dw−1

(
θ

(x

2
, 1

)
+ θ

(
x + 1

2
, 1

)
− θ

(
1

2
, 1

))
, (9)

so that we now have to solve the following functional equation:

f (x) = 2dw−1

(
f

(x

2

)
+ f

(
x + 1

2

)
− f

(
1

2

))
. (10)

3



J. Phys. A: Math. Theor. 44 (2011) 255003 V Tejedor et al

We know that f (x) = f (1 − x) by symmetry and that f (0) = f (1) = 0. Differentiation of
this equation yields

f ′(x) = 2dw−2

(
f ′

(x

2

)
+ f ′

(
x + 1

2

))
, (11)

together with the symmetry condition f ′(x) = −f ′(1 − x). It can be checked directly that
equation (11) is solved by the Hurwitz zeta function ζ(2 − dw, x), the latter being defined by
the series

ζ(s, q) =
∞∑

n=0

1

(q + n)s
. (12)

Note that ζ(2 − dw, 1 − x) is also a solution. In order to satisfy the symmetry condition, a
solution of equation (11) satisfying f ′(x) = −f ′(1 − x) is ζ(2 − dw, x) − ζ(2 − dw, 1 − x).
A solution of the original equation (10) satisfying f (0) = 0 is then

f (x) =
∫ x

0
(ζ(2 − dw, y) − ζ(2 − dw, 1 − y)) dy. (13)

Furthermore, using the fact that the Hurwitz zeta function satisfies the relation

∂ζ(s, x)

∂x
= −sζ(s + 1, x), (14)

one can simplify equation (13) and write

f (x) = 1

dw − 1
(ζ(1 − dw, x) + ζ(1 − dw, 1 − x) − ζ(1 − dw, 0) − ζ(1 − dw, 1)). (15)

The MFPT eventually becomes

θ(y, l) = ALdw

(
ζ

(
1 − dw,

y

l

)
+ ζ

(
1 − dw, 1 − y

l

)
− ζ(1 − dw, 0) − ζ(1 − dw, 1)

)
,

(16)

where A is a multiplicative constant which remains undetermined at this stage. For dw = 2
(Brownian case), we retrieve the classical expression, using ζ(−n, x) = −Bn+1(x)/(n + 1),
where Bn are the Bernoulli polynomials (B2(x) = x2 − x + 1/6):

f (x) = ζ(−1, x) + ζ(−1, 1 − x) − ζ(−1, 0) − ζ(−1, 1)

= − 1
2 (B2(x) + B2(1 − x) − B2(0) − B2(1))

= x(1 − x).

Comparison of this expression to the well-known result θ(y, l) = y(l − y) yields A = 1 in
this Brownian case, with D = 1/2.

In the general case dw 
= 2, A can be calculated by using the exact asymptotic result in
the large l limit of equation (1) (see [11] for details). For y � l, the asymptotic behavior of
equation (16) readily produces

lim
l→∞

θ(y, l)

l
= Aydw−1. (17)

Comparison with the general result of [11] then delivers

A =
∫ ∞

0

du

udf /dw
g∗(u−1/dw ), (18)

where the infinite space propagator of the process p(r, t) satisfies

4
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p(r, t) = t−1/dwg(r/t1/dw ), (19)

and g∗(u) = g(0) − g(u) tends to 0 when u → 0.
Because of the generalized central limit theorem invoked in the introduction, a generic

continuous time self-similar Markov process with dw 
= 2 is a Lévy process, whose infinite
space propagator reads

p(r, t) = 1

π

∫ ∞

0
cos(rx) e−t (cx)dw

dx, (20)

where c is a scaling parameter. We subsequently deduce

g(u) = 1

π

∫ ∞

0

1

u
cos(v) e−( cv

u
)dw

dv, (21)

and

g∗(u) = 1

π

∫ ∞

0

1

u
(1 − cos(v)) e−( cv

u
)dw

dv. (22)

The constant A can then be explicitly calculated and reads

A =
∫ ∞

0

du

πu1/dw

∫ ∞

0
u1/dw (1 − cos(v)) e−(cv)dw u dv

=
∫ ∞

0

1 − cos(v)

π(cv)dw
dv

A = dw

2cdw	(1 + dw) cos
(

(2−dw)π

2

) . (23)

Equations (16) and (23) provide an explicit and exact expression of the MFPT for all r and L,
valid for any continuous time and space scale-invariant Markov process.

In order to check equation (16), we simulated Lévy flights with various values of dw. A
Lévy flight is here modeled as a discrete-time random walk, where each step size is a random
integer x, distributed according to the distribution

w(x = n) = 1

2ζ(1 + dw)|n|1+dw
, (24)

with w(x = 0) = 0. The random walk takes place on a 1D lattice of size N, in discrete time,
and with periodic boundary conditions. The target is located at the site of origin 0 ≡ N . This
process converges in the continuous limit defined in the introduction to a Lévy process, whose
infinite space propagator is given by equation (20) with

cdw = π

2dw sin
(

πdw

2

)
	(dw)ζ(1 + dw)

. (25)

We compared the exact expression (16) obtained in the continuous limit with our discrete
simulation. Figures 1 and 2 show that as the lattice size N grows, the simulated discrete
MFPT approaches the exact continuous limit, for different values of dw (for each dw, the
multiplicative constant A is computed using (23)). Note the very slow convergence to
the exact solution in the continuous limit. We show below that leapovers lead to non-vanishing
corrections of the MFPT to this continuous limit in the large system size limit, which we define
as the residual MFPT.

5
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0 0.2 0.4 0.6 0.8 1
r/L

0

0.5

1

<
T

>
/L

d w

Figure 1. MFPT for a Lévy flight, for several sizes of the 1D lattice (200, 400, 800, 1600,
3200 and 6400 sites, from black (bottom) to light gray (top) as the size grows) compared to the
theoretical expression (16) (magenta dotted line, the A constant being given by equation (23)), and
for dw = 1.25.

0 0.2 0.4 0.6 0.8 1
r/L

0

0.1

0.2

0.3

0.4

<
T

>
/L

d w

Figure 2. MFPT for a Lévy flight, for several sizes of the 1D lattice (200, 400, 800, 1600, 3200 and
6400 sites, from black (top) to light gray (bottom) as the size grows) compared to the theoretical
expression of equation (16) (magenta dotted line, the A constant being given by equation (23)),
and for dw = 1.5.

3. Discrete time and space jump processes

To investigate the convergence of the discrete process to its continuous limit, we compute
analytically the MFPT for a generic discrete time and space Markov jump process, regarding
jump processes with and without second moments. We use the formalism developed by
Montroll [23] (see also Hughes [1]). First, we define the structure function λ(k), the Fourier
transform of the jump distribution (24):

λ(k) =
∞∑

n=−∞
w(x = n) eink. (26)

6
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Denoting by P̃t (k) the Fourier transform of the propagator at discrete time t in infinite space,
we obtain P̃t (k) = λ(k)t . The infinite space Green’s function then reads

Gji =
∞∑
t=0

P(j, t |i, 0) =
∞∑
t=0

1

π

∫ π

0
cos(k|i − j |)λ(k)t dk

= 1

π

∫ π

0

cos(k|i − j |)
1 − λ(k)

dk. (27)

Recalling that there exists a set � of targets located at sites nL (n ∈ Z) it is useful to define

G�r =
∞∑

n=−∞

1

π

∫ π

0

cos(k(r + nL))

1 − λ(k)
dk (28)

= 1

L

L−1∑
m=1

cos
(

2πmr
L

)
1 − λ

(
2πm
L

) . (29)

It can then be checked directly that the expression

〈T(r, L)〉 = L(G�� − G�r) =
L−1∑
m=1

1 − cos
(

2πmr
L

)
1 − λ

(
2πm
L

) (30)

represents an exact solution for the MFPT of a 1D discrete time and discrete space
symmetric random walk, since it satisfies both equation (5) and the boundary condition
〈T(r = nL,L)〉 = 0 for all n ∈ Z. In what follows we distinguish (i) the continuous limit
θ(y, l) of this exact expression, defined by equation (7), and (ii) the scaled MFPT in the large
L limit, which reads according to equation (30)

lim
L→∞

〈T(r, L)〉
L

≡ τ(r) = 1

π

∫ π

0

1 − cos (kr)

1 − λ (k)
dk. (31)

While it is clear that the continuous limit θ(y, l) must yield the exact result of equation (16)
derived independently above, we will show below that the scaled MFPT τ(r) can differ from
this continuous limit as soon as the jump distribution allows leapovers. The residual MFPT
corresponds to the non-vanishing, subleading term of τ(r) in the large r regime, which can be
obtained by considering the k → 0 behavior of λ(k). We consider different examples below,
corresponding to jump distributions with and without a second moment.

3.1. Residual MFPT for jump distributions with a second moment

We first consider a random walk whose jump distribution possesses a second moment. As a
concrete example we employ the exponential law defined by

P(n) = (eβ − 1)

2
e−β|n| (32)

for n � 1 and P(0) = 0, where β is a scaling parameter. The second moment of this jump
distribution becomes

〈n2〉 =
∞∑

n=−∞
n2P(n) = eβ(1 + eβ)

(eβ − 1)2
, (33)

so that the continuous limit of this jump process, according to equation (3), is a Brownian
motion with diffusion coefficient D = 〈n2〉/2, and therefore dw = 2. In this continuous limit
one obtains straightforwardly the following form of the MFPT:

θ(y, l) = lim
ε→0

εdw 〈T(r = y/ε, L = l/ε)〉 = (eβ − 1)2

eβ(1 + eβ)
y(l − y). (34)

7
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We now apply the formalism of the previous section and first compute the structure function
λ(k), obtaining

λ(k) =
∞∑

n=−∞
P(x = n) eink = (eβ − 1)

∞∑
n=1

cos(nk) e−βn

= (eβ − 1)
eβ cos(k) − 1

(eβ cos(k) − 1)2 + (eβ sin(k))2
. (35)

An exact expression of the MFPT is then given by (30), for which we find for r 
= nL

〈T(r, L)〉 =
L−1∑
m=1

1 − cos
(

2πmr
L

)
1 − λ

(
2πm
L

)

= 1

eβ(eβ + 1)

L−1∑
m=1

1 − cos
(

2πmr
L

)
1 − cos

(
2πm
L

) ×
(

(eβ − 1)2 + 2 eβ

(
1 − cos

(
2πm

L

)))

= (eβ − 1)2

eβ(eβ + 1)
r(L − r) +

2 eβ

eβ(eβ + 1)
L. (36)

While this result has the expected continuous limit (34), it reveals a significant difference from
the scaled MFPT, containing a non-vanishing residual, subleading correction. More precisely
we find that

lim
L→∞

〈T(r, L)〉
L

= τ(r) = (eβ − 1)2

eβ(eβ + 1)
r +

2eβ

eβ(eβ + 1)
, (37)

where we define the non-vanishing subleading term 2eβ/(eβ(eβ + 1)) as the residual MFPT.
Actually, the residual MFPT for a generic jump distribution with the second moment can

be fully derived. We write the small k expansion of the structure function as λ(k) ∼ 1 − Dk2,
where the diffusion coefficient is given by D = 〈n2〉/2 as above. Then one has

τ(r) = 1

π

∫ π

0

1 − cos (kr)

Dk2
dk + B + o(1)

= r

2D
+ B + o(1), (38)

where the residual MFPT is given by

B = 1

π

∫ π

0

(
1

1 − λ (k)
− 1

Dk2

)
dk − 1

Dπ2
. (39)

This reveals the crucial difference between the large system size limit on the one hand and
the continuous space and time limit for MFPTs of jump processes on the other. Our above
analysis (see equation (39)) suggests that a residual MFPT exists in the large system size limit
as soon as leapovers are allowed. In particular, the residual MFPT depends on the full jump
distribution and not only on its second moment. For example, the case of a nearest neighbor
random walk, for which λ(k) = cos(k), yields a vanishing residual MFPT, as can be checked
from equation (39).

3.2. Residual MFPT for Lévy flights

We now turn to jump distributions with an infinite second moment. The continuous limit of
such jump processes is a Lévy flight by virtue of the generalized central limit theorem. We

8
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start with the example of symmetric discrete space Lévy flights defined by the distribution
(24), for which one has

λ(k) =
∞∑

n=−∞
w(x = n) eink = 1

ζ(dw + 1)

∞∑
n=1

cos(nk)

ndw+1
. (40)

We first note that using this expression in the exact result (30) yields in the continuous limit
the result (16) and (23), as expected. We consider below the large L limit of the MFPT and
will therefore make use of the following small k expansion [1]:

λ(k) = 1 − α1k
dw + α2k

2 + O(k4), (41)

where

α1 = π

2ζ(dw + 1)	(dw + 1) sin
(

πdw

2

) , (42)

and

α2 = ζ(2 − dw)	(2 − dw)

ζ(1 + dw)(2π)2−dw
cos

(
πdw

2

)
. (43)

We then compute the following large r expansion of the scaled MFPT:

τ(r) = 1

π

∫ π

0

1 − cos(kr)

α1kdw
dk + O(r2dw−3). (44)

For any value of dw ∈ ]1, 2[, we obtain the following expression of the leading term:

τ(r) � rdw−1

α1π

∫ ∞

0

1 − cos(u)

udw
dk

� dwrdw−1

2α1	(1 + dw) cos
(

π(2−dw)

2

) . (45)

We therefore obtain exactly the result (1) derived in the continuous limit, with the multiplicative
constant given by (23). In particular, the leading term of the MFPT does not depend on the
exact form of the discrete time propagator, but only on its continuous limit.

To assess the subleading term, we have to distinguish between the cases dw > 3/2 and
dw � 3/2. For the latter case, we obtain a correction term to the scaled MFPT behaving as
O(1),

τ(r) = dw

2α1	(1 + dw) cos
(

π(2−dw)

2

) rdw−1 + B + o(1), (46)

where the subleading term B, defining the residual MFPT, is a constant, that does not vanish
in the limit L → ∞,

B = 1

π

∫ π

0

1

1 − λ(k)
− 1

α1kdw
dk − 1

α1(dw − 1)πdw
. (47)

The residual MFPT B depends on the full k expansion of λ(k), and thus on the precise form
of the propagator. If the leading term is the same for all jump processes sharing the same
limiting propagator, the residual term depends on the shape of the jump distribution, as was
found in the case of jump processes with a finite second moment. The validity of expansion
(46) is verified numerically in figure 3.

For the case dw > 3/2, the third term in the k expansion of λ(k) has to be taken into
account. We now need to compute a second subleading term in the large r expansion,

9
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Figure 3. MFPT for a Lévy flight on a 1D lattice of size 200, for dw = 1.25, in discrete time
(black circles) compared to the theoretical expression of equation (30) (red line), to the rough
approximation of (45) (green dotted line) and to the approximation (46) (blue dashed line). The
inset shows the difference between the three theoretical expressions (Tth) and the simulation (Tsim).

τ(r) = 1

π

∫ π

0

1 − cos(kr)

α1kdw
dk +

1

π

∫ π

0

1 − cos (kr)

α2
1

α2
k2dw−2

dk + B + o(1) (48)

= dw

2α1π	(1 + dw) cos
(

π(2−dw)

2

) rdw−1 +
(2dw − 2)α2

2α2
1	(2dw − 1) cos(πdw)

r2dw−3 + B + o(1).

(49)

Importantly, this expansion yields again a residual term B, which does not vanish for small r,
and which depends on the full jump distribution:

B = 1

π

∫ π

0

(
1

1 − λ (k)
− 1

α1kdw
− α2

α2
1k

2dw−2

)
dk − 1

α1(dw − 1)πdw

− α2

α2
1(2dw − 3)π2dw−2

. (50)

The validity of expansion (49) is verified numerically in figure 4.
To emphasize how critically the residual MFPT depends on the jump distribution, we

consider the example of a Lévy flight in discrete time, but now in continuous space. At each
time step, the random walker makes a step distributed according to a symmetric Lévy stable
distribution of index α = dw. The structure function λ(k) is then directly the characteristic
function of the Lévy distribution,

λ(k) = exp(−|ck|dw ) = 1 − (ck)dw − (ck)2dw

2
+ O(k2dw ). (51)

The leading term of the MFPT is then the continuous limit obtained in equations (17) and
(23), with α1 = cdw . However, the subleading term in this case is always a constant residual
MFPT, whose value depends on the specific shape of the jump distribution. This means that
the scaled MFPT admits different large r expansions for Riemann walks (distribution (24))
and continuous space Lévy flights, which depend on the full jump distribution and not only
its asymptotics. Importantly, we found that in both cases there exists a non-vanishing residual
correction to the MFPT. These results, together with the previous section, suggest that a
non-vanishing residual MFPT exists as soon as the jump distribution allows leapovers.
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Figure 4. MFPT for a Lévy flight on a network of size 200, for dw = 1.75, in discrete time (black
circles) compared to the theoretical expression (30) (red line), to the rough approximation of (45)
(green dotted line), and to the approximation (49) with the first subleading term (blue dashed line)
and with two subleading terms (magenta plain line). The inset shows the difference between the
last three theoretical expressions (Tth) and the simulation (Tsim).

4. Splitting probabilities

The above formalism can be extended to further first-passage observables, including
observables involving several targets, following the method developed in [24]. As an
illustrative example we consider the case of splitting probabilities. More precisely, we assume
that the jump process takes place on a ring of length 2L, with a target T1 at position r = 0 and
a target T2 at position r = L. Note that in the case of processes with leapovers, first-passage
problems involving N > 2 targets do not reduce to problems with two targets. We denote by
P1 the probability that the walker hits T1 before ever reaching T2. It is known that P1 can be
exactly expressed in terms of MFPTs as follows [25]:

P1(r, L) = 〈T(r + L, 2L)〉 − 〈T(r, 2L)〉 + 〈T(L, 2L)〉
2〈T(L, 2L)〉 . (52)

Indeed, it can be easily seen that this form satisfies the boundary conditions P1(0, L) = 1
and P1(L,L) = 0, as well as the backward equation �rP1(r, L) = 0. The exact form of the
MFPT derived in equation (30) therefore provides straightforwardly an exact expression of
the splitting probabilities. In particular, it admits a simple closed form in the continuous limit,
which reads

P1

(
x = r

L

)
= 1

2

ζ
(
1 − dw, 1+x

2

)
+ ζ

(
1 − dw, 1−x

2

) − ζ
(
1 − dw, x

2

) − ζ
(
1 − dw, 1 − x

2

)
2ζ

(
1 − dw, 1

2

) − ζ(1 − dw, 0) − ζ(1 − dw, 1)
+

1

2
.

(53)

For dw = 2 (Brownian case), we retrieve the classical expression using ζ(−n, x) =
−Bn+1(x)/(n + 1), where Bn are the Bernoulli polynomials (B2(x) = x2 − x + 1/6),

P1(x) = B2
(

x
2

)
+ B2

(
1 − x

2

) − B2
(

1+x
2

) − B2
(

1−x
2

)
2B2(0) + 2B2(1) − 4B2

(
1
2

) +
1

2

= 1 − x.

In the generic case dw 
= 2, equation (53) provides an exact expression for the splitting
probability of a 1D Lévy process. We compare this exact solution in the continuous limit
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Figure 5. Splitting probability for Lévy flights, for several sizes of the discrete network (200,
400, 800, 1600, 3200 and 6400 sites, from black to light gray as the size grows) compared to the
theoretical expression of equation (53) (magenta dotted line), and for dw = 1.25.
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Figure 6. Splitting probability for Lévy flights, for several size of the discrete network (200,
400, 800, 1600, 3200 and 6400 sites, from black to light gray as the size grows) compared to the
theoretical expression of equation (53) (magenta dotted line), and for dw = 1.5.

(53) with numerical simulations of Lévy flights. The results are shown in figures 5, 6, and
7, indicating a rather slow convergence to the continuous limit as the system size grows.
Clearly, the residual MFPT analyzed in previous sections yields a non-vanishing correction
to the splitting probabilities in the large system size limit. Figure 7 shows that taking into
account the residual MFPT in the evaluation of the MFPTs entering equation (52), significantly
improves the results for finite size L in the regimes of small r and small L−r. These results can
be straightforwardly generalized to a larger number of targets using the formalism developed
in [24].

5. MFPT for fractional Brownian motion

Expressions (16) and (53) are valid for any continuous, compact, self-similar and Markovian
1D random walk. Fractional Brownian motion (FBM) shares all these properties except for
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Figure 7. Splitting probability for Lévy flights on a network of size 200, for dw = 1.25, in discrete
time (black line), compared to the theoretical expression (53) (red dashed line), and to the exact
expression (52) where the first subleading term of the MFPT of equation (47) is taken into account
(green dotted line). The inset shows the difference between the two theoretical expressions (P1,th)
and the simulation (P1,sim).
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Figure 8. MFPT for an FBM, for several values of the Hurst exponent H = 1/dw (0.40, 0.45,
0.50, 0.55, 0.60 and 0.65, from black (bottom) to light gray (top) as H grows). The continuous
lines represent the simulations results, and the dashed lines the theoretical expressions following
equation (16), where A is a fitting parameter.

the Markov condition. FBM is defined as a continuous-time Gaussian process with zero mean
and stationary increments. More specifically, FBM is defined through the Langevin equation

dx(t)

dt
= ξ(t) (54)

for the position x(t), which is driven by the stationary, fractional Gaussian noise ξ(t) with
〈ξ(t)〉 = 0 and the long-ranged noise correlation [26]

〈ξ(t1)ξ(t2)〉 = 2H(2H − 1)|t1 − t2|2H−2 + 4H |t1 − t2|2H−1δ(t1 − t2), (55)

where we chose a unity diffusion constant. This process has the following covariance:

〈x(t)x(s)〉 = 1
2 (|t |2H + |s|2H − |t − s|2H ). (56)
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For subdiffusive processes (H < 1/2), the underlying fractional Gaussian noise (55) is
anticorrelated, while it is positively correlated in the superdiffusive case (1/2 < H < 1).

To test numerically the applicability of our above results to non-Markovian processes,
we performed simulations of FBM and compared the MFPT to a target for this process with
expression (16). The results shown in figure 8 demonstrate that expression (16) with free
parameter A provides a surprisingly good approximation of the MFPT for FBM, even though
this process is highly non-Markovian (see also the discussion in [27]). These numerical
findings suggest that memory effects do not play an overly crucial role in the determination
of MFPTs for FBM, and that the range of applications of the approach developed herein in
practice extends to examples of non-Markovian processes.

6. Conclusion and summary

To conclude, we obtained a functional equation for the MFPT of a generic self-similar
Markovian continuous process to a target in a 1D domain and derived its exact solution. We
showed that such a continuous limit of the MFPT is actually different from the large system size
limit for discrete jump processes allowing leapovers. In the leapover case, the large system
size limit of the MFPT involves non-vanishing corrections, which we call residual MFPT.
This residual time can have important consequences in the context of both search processes
and numerical simulations of first-passage times of random walks. We have investigated in
detail the case of Lévy flights and validated our results by numerical simulations. We also
demonstrated numerically that our results apply with surprising accuracy to FBM, despite its
non-Markovian nature.
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