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Abstract
In this paper, the solution of a fractional diffusion equation with a Hilfer-
generalized Riemann–Liouville time fractional derivative is obtained in terms
of Mittag–Leffler-type functions and Fox’s H-function. The considered
equation represents a quite general extension of the classical diffusion (heat
conduction) equation. The methods of separation of variables, Laplace
transform, and analysis of the Sturm–Liouville problem are used to solve
the fractional diffusion equation defined in a bounded domain. By using the
Fourier–Laplace transform method, it is shown that the fundamental solution
of the fractional diffusion equation with a generalized Riemann–Liouville time
fractional derivative defined in the infinite domain can be expressed via Fox’s
H-function. It is shown that the corresponding solutions of the diffusion
equations with time fractional derivative in the Caputo and Riemann–Liouville
sense are special cases of those diffusion equations with the Hilfer-generalized
Riemann–Liouville time fractional derivative. The asymptotic behaviour of
the solutions are found for large values of the spatial variable. The fractional
moments of the fundamental solution of the fractional diffusion equation are
obtained. The obtained results are relevant in the context of glass relaxation
and aquifer problems.
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1. Introduction

Anomalous diffusion is characterized by deviations from the linear increase with time of the
variance of the process. In particular, for anomalous diffusion processes following the law

〈x2(t)〉 � Kμtμ, (1)

with the generalized diffusion constant Kμ and the anomalous diffusion exponent μ, we
distinguish the cases of subdiffusion (0 < μ < 1) and superdiffusion (1 < μ) [1, 2]. Patterns
of the form (1) have been observed in systems as different as tracer dispersion in aquifers [3],
bacteria cells moving in biofilms [4], diffusion of lipid granules and biopolymers in living cells
[5–8], diffusion in critical percolation networks [9], and charge carrier motion in amorphous
semiconductors [10]. Anomalous diffusion is often associated with interesting physical effects
such as the inequivalence of time versus ensemble averages [5, 11].

Continuous time random walks (CTRWs) readily generalize the standard random walk
concept to describe anomalous diffusion of the form (1) [10]. The associated dynamic equation
is the fractional diffusion equation [1, 2, 12, 13]. To see this, consider a subdiffusive CTRW,
a process characterized by a distribution of jump lengths with finite variance 〈δx2〉 and broad
distribution of waiting times of the form ψ(τ) � (τ ∗)μ/τ 1+μ with 0 < μ < 1. Consequently,
the characteristic waiting time

∫∞
0 τψ(τ) dτ diverges, and the distribution ψ(τ) is scale-free.

According to CTRW theory [14], this process leads to the form (1) of the mean squared
displacement, and the probability density f (x, t) fulfils

uf (k, u) − 1 = −Kμu−μk2f (k, u) (2)

in Fourier–Laplace space (see below for details). Here we identified the anomalous diffusion
constant Kμ = 〈δx2〉/[2τμ]. Fourier and Laplace inversion led to the equivalent, alternative
formulations

RLD
μ

0+f (x, t) − δ(x)

tμ�(1 − μ)
= Kμ

∂2

∂x2
f (x, t) (3a)

CD
μ

0+f (x, t) = Kμ

∂2

∂x2
f (x, t) (3b)

in the Riemann–Liouville (R–L) and Caputo sense, respectively (compare definitions (7) and
(8) below). While in the R–L formulation the initial condition f (x, t = 0+) = δ(x) is directly
incorporated in the dynamic equation, the analogous Caputo version appears closer to the
structure of the normal diffusion equation (μ = 1).

Several authors have investigated fractional dynamic equations generalizing the diffusion
or wave equations in terms of R–L or Caputo time fractional derivatives, and their fundamental
solutions have been represented in terms of the Mittag–Leffler (M–L) functions and their
generalizations [13, 15–20]. Similar diffusion-wave equations with the R–L and Caputo time
fractional derivatives are considered in [21–28]. A detailed analysis and methods of solving
different types of fractional diffusion equations, similar to those considered in this work, may
be found in the review articles [1, 2]. Such models are used for the description of the transport
dynamics in complex systems. Generalized transport equations of such types are related to
the generalized Chapman–Kolmogorov equation discussed by Metzler [29].

Fractional calculus has indeed been studied by a range of celebrated mathematicians and
physicists. To name but a few, we mention Leibniz, Euler, Laplace, Lacroix, Fourier, Abel,
Liouville, Riemann, Letnikov, etc. Abel in 1823 studied the generalized tautochrone problem
and for the first time applied fractional calculus techniques in a physical problem. Later
Liouville applied fractional calculus to problems in potential theory. Nowadays fractional
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calculus receives increasing attention in the scientific community, with a growing number
of applications in physics, electrochemistry, biophysics, viscoelasticity, biomedicine, control
theory, signal processing, etc [16, 30–37].

At the beginning of the 20th century, the Swedish mathematician Gösta Mittag–Leffler
[38] introduced a generalization of the exponential function, today known as the Mittag–
Leffler function. The properties of the M–L function and the generalizations by Wiman [39],
Agarwal [40], Humbert [41], and Humbert and Agarwal [42] had been totally ignored by the
scientific community for a considerable time due to their unknown application in the science.
They appear as solutions of differential and integral equations of fractional order. Thus,
in 1930 Hille and Tamarkin [43] solved the Abel–Volterra integral equation in terms of the
M–L function. The basic properties and relations of the M–L function appeared in the third
volume of the Bateman project [44]. A more detailed analysis of the M–L function and their
generalizations as well as fractional derivatives and integrals were published later [45–53].
M–L functions are of great interest for modelling anomalous diffusive processes [1, 2, 50,
54–59].

Similarly, Fox’s H-function, introduced by Charles Fox [60], is of great importance
in solving fractional differential equations and to analyse anomalous diffusion processes
[1, 2, 56]. For example, Mainardi et al [56] expressed the fundamental solution of the Cauchy
problem for the fractional diffusion equation in terms of H-functions, based on their Mellin–
Barnes integral representations. A detailed study of these functions as symmetrical Fourier
kernels was reported by Srivastava et al [61].

Here we consider a fractional diffusion equation with a generalized time fractional
differential operator recently derived by Hilfer [50]. We present explicit solutions in both
confined and unconfined space. Moreover, fractional moments are derived. The paper is
organized as follows. Some generalized differential and integral operators are considered in
section 2. In section 3, the exact solution of the generalized fractional diffusion equations
in a bounded domain is obtained in terms of M–L functions. The method of separation of
variables and the Laplace transform method are applied to solve the equation analytically. In
section 4, an infinite domain is considered. The Fourier–Laplace transform method is used
to solve the equation analytically, finding exact solutions in terms of H-functions in some
special cases. The asymptotic behaviour of the solution is derived, and fractional moments
of the fundamental solution obtained. In section 5, a fractional diffusion equation with a
singular term is considered. The conclusions are presented in section 5. In the appendix, some
properties of the M–L and H-functions are presented.

2. Generalized differential and integral operators

The right-sided R–L fractional integral is defined by [48, 50, 51]

(
Iμ
a+f

)
(t) = 1

�(μ)

∫ t

a

f (τ )

(t − τ)1−μ
dτ, t > a, �(μ) > 0. (4)

For μ = 0, this is the identity operator,
(
I 0
a+f

)
(t) = f (t). Similarly, the right-sided R–L

fractional derivative is defined by [48, 50, 51]

(
Dμ

a+f
)
(t) =

(
d

dt

)n (
I n−μ
a+ f

)
(t), �(μ) > 0, n = [�(μ)] + 1, (5)

3
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where [�(μ)] denotes the integer part of the real number �(μ). Hilfer generalized the
fractional derivative (5) by the following right-sided fractional derivative of order 0 < μ < 1
and type 0 � ν � 1 [50]:(

Dμ,ν
a+ f

)
(t) =

(
I ν(1−μ)
a+

d

dt

(
I (1−ν)(1−μ)
a+ f

))
(t). (6)

Note that when 0 < μ < 1, ν = 0, a = 0, the generalized R–L fractional derivative (6) would
correspond to the classical R–L fractional derivative [46, 47](

RL
D

μ

0+f
)
(t) = d

dt

(
I

(1−μ)

0+ f
)
(t). (7)

Conversely, when 0 < μ < 1, ν = 1, a = 0, it would reduce to the Caputo fractional
derivative [62] (

C
D

μ

0+f
)
(t) =

(
I

(1−μ)

0+

d

dt
f

)
(t). (8)

The generalized fractional derivative (6) was recently called the Hilfer fractional derivative
by Mainardi and Gorenflo [63] (see also [53]). This operator appeared in the theoretical
modelling of dielectric relaxation in glass forming materials [64]. The difference between
fractional derivatives of different types becomes apparent when we consider their Laplace
transform. In [50], it is found for 0 < μ < 1 that

L
[
D

μ,ν

0+ f (t)
] = sμL[f (t)] − sν(μ−1)

(
I

(1−ν)(1−μ)

0+ f
)
(0+), (9)

where the initial-value term
(
I

(1−ν)(1−μ)

0+ f
)
(0+) is evaluated in the limit t → 0+, in the space

of summable Lebesgue integrable functions

L(0,∞) =
{
f : ‖f ‖1 =

∫ ∞

0
|f (t)|dt < ∞

}
. (10)

The Laplace transform of a pure Caputo derivative becomes

L
[(

C
Dα

0+f
)
(t)
] = sαL[f (t)] − sα−1f (0+), 0 < α < 1, (11)

and thus includes the regular initial value f (0+). This is in contrast with the R–L fractional
derivative, for which the Laplace transform

L
[(

RL
Dα

0+f
)
(t)
] = sαL[f (t)] − (

I
(1−α)
0+ f

)
(0+), 0 < α < 1, (12)

includes pseudo-initial conditions of fractional order. Both derivatives are equivalent if we
consider proper initial conditions:(

C
Dα

0+f
)
(t) = (

RL
Dα

0+f
)
(t) − f (0+) · t−α

�(1 − α)
, 0 < α < 1, (13)

and this ambiguity can be completely avoided in integral formulations of fractional
equations [1]. In the light of the composite fractional differential operator (6) and its property
(9), the formulation in terms of the composite derivative can be viewed as a convenient
abbreviation of complicated initial value terms.

Various operators for fractional integration (involving, for example, kernels with such
general classes of functions as the H-function) were investigated systematically by Srivastava
and Saxena [65]. Recently, Srivastava and Tomovski [53] introduced an integral operator(
Eω;γ,κ

a+;α,βϕ
)
(t) defined as(

Eω;γ,κ

a+;α,βϕ
)
(t) =

∫ t

a

(t − τ)β−1E
γ,κ

α,β (ω(t − τ)α)ϕ(τ) dτ, (14)
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where E
γ,κ

α,β (z) is the generalized four-parameter M–L function (A.8). In the case when ω = 0
the integral operator (14) would correspond to the classical R–L integral operator (4). This
operator recently appeared in the expression of the solution of the general time fractional wave
equation for a vibrating string [23]. We will see that the generalization (14) will be useful for
the solution of the Hilfer-generalized diffusion equations with the fractional derivative (6).

3. Fractional diffusion equation in a bounded domain

The time fractional diffusion equation is obtained from the standard diffusion equation by
consistently replacing the first-order time derivative with a given fractional derivative. The
main physical purpose adopting and investigating diffusion equations of fractional orders is
to describe phenomena of anomalous diffusion, usually met in transport processes through
complex and/or disordered media including fractal supports (see, for example, [1, 2, 28, 50,
66]).

In our present investigation, we consider the time fractional diffusion equation

D
μ,ν

0+ u(x, t) = Kμ

∂2

∂x2
u(x, t) + f (x, t), t > 0, (15)

defined in a bounded domain 0 � x � l, with boundary conditions

u(x, t)|x=0 = h1(t), u(x, t)|x=l = h2(t), (16)

and initial condition(
I

(1−ν)(1−μ)

0+ u(x, t)
)
(0+) = g(x). (17)

Here, u(x, t) represents the probability profile of a given tracer substance, and Kμ denotes
the generalized diffusion constant of physical dimension [Kμ] = cm2 s−μ. Because of the
independence of [Kμ] on ν we chose the simplified notation with the sole index μ, despite
the fact that the numerical value of Kμ depends on the value of ν. The independence of the
dimensionality of Kμ of the parameter ν can be directly seen from the dimensional analysis
of the composite fractional derivative D

μ,ν

0+ . Finally, f (x, t) is the density of the sources which
transfers the substance into or out of the system as a result of a given reaction (for example,
chemical reaction), D

μ,ν

0+ is the generalized R–L time fractional derivative (6), and I
(1−ν)(1−μ)

0+
is the integral operator (4). Thus, the solution of this problem describes the transition of the
solutions of equation (15) in the case of the R–L time fractional derivative (ν = 0) and the
Caputo time fractional derivative (ν = 1). Note that equation (15) also represents a heat
conduction time fractional differential equation. The proposed equation is a generalization
of the classical diffusion equation [67], which can be obtained by using μ = 1 for any value
of ν.

A few words concerning equations (15) and (17) are in order. Generalized dynamic
equations with the composite fractional derivative or Hilfer-generalized derivative (6) were
originally introduced by Hilfer [50]. They arise from fractional time evolutions and in the
context of relaxation models lead to versatile solutions that provide excellent description
of experimental data over more than ten orders of magnitude, with less parameters than
traditional fit functions such as Havriliak–Negami [64, 68]. The seemingly complicated
choice (17) for the initial value is for convenience, only. The ‘real’ initial value is defined by
the behaviour of the density u(x, t). Due to the form of the Laplace transform of the fractional
R–L derivative, non-integer order derivatives naturally appear. To avoid the complicated
notation, we prefer using the function g(x). A similar situation arises in the standard one-
parameter fractional diffusion equation (3a). Here, the initial value term can be identified as(
I

(1−μ)

0 u(x, t)
)
(0+) = δ(x)t−μ/�(1 − μ). Note that while equation (3a) is formulated such

5
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that the normalization is conserved, this is generally not the case for the composite-fractional
diffusion equation (15), see also section 5. This is legitimate for many problems, in which
the dynamic equation (15) would correspond to the real part of the observed quantity, while
the imaginary part would lead to damping, for instance, in the description of dielectric or
viscoelastic phenomena [64, 69].

Lemma 1. Let 0 < μ < 1, 0 � ν � 1 and s, λn ∈ R+. Then the following relation holds
true:

L−1

[
s−ν(1−μ)

sμ + λn

]
(t) = t−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν) (−λnt

μ) , (18)

where Eμ,1−(1−μ)(1−ν) (−λnt
μ) is the two-parameter M–L function (A.2).

Proof. From relation (A.5), by using α = μ, α − β = −ν(1 − μ) and a = λn, follows the
proof of lemma 1. �

Lemma 2. Let 0 < μ < 1 and s, λn ∈ R+. Then the following relation holds true

L−1

[
1

sμ + λn

L
[
f̃n(t)

]
(s)

]
(t) = (

E−λn;1,1
0+;μ,μ f̃n

)
(t), (19)

where E−λn;1,1
0+;μ,μ f̃n is the integral operator (14) and f̃n(t) is a given function.

Proof. From relation (A.5) it follows that

1

sμ + λn

= L
[
tμ−1Eμ,μ

(− λnt
μ
)]

(s). (20)

Thus, by applying the convolution theorem of the Laplace transform one obtains

L−1

[
1

sμ + λn

L
[
f̃n(t)

]
(s)

]
(t) =

∫ t

0
(t − τ)μ−1Eμ,μ (−λn(t − τ)μ) f̃n(τ ) dτ, (21)

from which we obtain the proof of lemma 2. �

Theorem 1. The time fractional diffusion equation (15) with boundary conditions (16) and
an initial condition (17) for 0 < μ < 1, 0 � ν � 1 has a summable solution in the space
L(0,∞) with respect to t:

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
+

∞∑
n=1

(
E−λn;1,1

0+;μ,μ f̃n

)
(t) sin

(nπx

l

)
+ v(x, t), (22)

where x ∈ [0, l],

v(x, t) = h1(t) +
x

l
[h2(t) − h1(t)] , (23)

an(t) = c̃nt
−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)

(
−Kμ

n2π2

l2
tμ
)

, (24)

c̃n = 2

l

∫ l

0
g̃(x) sin

(nπx

l

)
dx, (25)

f̃n(t) = 2

l

∫ l

0
f̃ (x, t) sin

(nπx

l

)
dx, (26)

f̃ (x, t) = f (x, t) − D
μ,ν

0+ v(x, t) (27)

6



J. Phys. A: Math. Theor. 44 (2011) 255203 T Sandev et al

and

g̃(x) = g(x) − (
I

(1−ν)(1−μ)

0+ v(x, t)
)
(0+). (28)

Proof. Representing the function u(x, t) in the following way:

u(x, t) = U(x, t) + v(x, t), (29)

and by the help of the function v(x, t) to satisfy the boundary conditions (16) of equation (15)

v(x, t)|x=0 = h1(t), v(x, t)|x=l = h2(t), (30)

it can be easily obtained that v(x, t) has the form (23). From relations (30) and (29) for the
function U(x, t) one finds

U(x, t)|x=0 = 0, U(x, t)|x=l = 0. (31)

From the initial condition (17) and with relation (29), one obtains(
I

(1−ν)(1−μ)

0+ U(x, t)
)
(0+) = g(x) − (

I
(1−ν)(1−μ)

0+ v(x, t)
)
(0+) = g̃(x). (32)

Employing

U(x, t) = U1(x, t) + U2(x, t) (33)

from relations (15), (29) and (33), one obtains

D
μ,ν

0+ [U1(x, t) + U2(x, t)] = ∂2

∂x2
[U1(x, t) + U2(x, t)] + f̃ (x, t), (34)

where f̃ (x, t) is given by (27).
The functions in relation (34) can be separated in the following way:

D
μ,ν

0+ U1(x, t) = ∂2

∂x2
U1(x, t), (35)

U1(x, t)|x=0 = 0, U1(x, t)|x=l = 0, (36)(
I

(1−ν)(1−μ)

0+ U1(x, t)
)
(0+) = g̃(x) (37)

and

D
μ,ν

0+ U2(x, t) = ∂2

∂x2
U2(x, t) + f̃ (x, t), (38)

U2(x, t)|x=0 = 0, U2(x, t)|x=l = 0, (39)(
I

(1−ν)(1−μ)

0+ U2(x, t)
)
(0+) = 0. (40)

Applying the method of separation of variables in equation (35), i.e. U1(x, t) = X(x)T (t),

one obtains the following equations:

D
μ,ν

0+ T (t) + λT (t) = 0, (41)

d2X(x)

dx2
+

λ

Kμ

X(x) = 0, (42)

where λ is a separation constant and the function X(x) satisfies the following boundary
conditions:

X(x)|x=0 = 0, X(x)|x=l = 0. (43)

7
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The eigenfunctions of the Sturm–Liouville problem (42) with the boundary conditions (43)

are given by λn = Kμ
n2π2

l2 (n = 1, 2, . . .) [67]. For the eigenfunctions Xn(x) = sin
(√

λn

Kμ
x
)

in the Hilbert space L2[0, l], it is satisfied that∫ l

0
sin

(√
λn

Kμ

x

)
sin

(√
λm

Kμ

x

)
dx = 2

l
δnm, (44)

where δmn is the Kronecker delta.
Equation (41) can be solved by the help of relation (9). Thus, we see that

sμL[Tn(t)](s) − s−ν(1−μ)
(
I

(1−ν)(1−μ)

0+ Tn

)
(0+) + λnL[Tn(t)](s) = 0, (45)

so that

L[Tn(t)](s) = s−ν(1−μ)

sμ + λn

(
I

(1−ν)(1−μ)

0+ Tn

)
(0+). (46)

The inverse Laplace transform of relation (46) can be found via relation (A.5) from lemma 1.
Thus, we obtain

Tn(t) = [(
I

(1−ν)(1−μ)

0+ Tn

)
(0+)

]
t−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)(−λnt

μ), (47)

where
(
I

(1−ν)(1−μ)

0+ Tn

)
(0+) = 2

l

∫ l

0 g̃(x) sin
(√

λn

Kμ
x
)

dx is a Fourier coefficient of g̃(x). Thus,

the solution of equation (35) is given by

U1(x, t) =
∞∑

n=1

an(t) sin

(√
λn

Kμ

x

)
, (48)

where an(t) is defined in relation (24).

Equation (38) can be solved by use of the complete set of eigenfunctions sin
(√

λn

Kμ
x
)
.

Thus,

U2(x, t) =
∞∑

n=1

un(t) sin

(√
λn

Kμ

x

)
(49)

and

f̃ (x, t) =
∞∑

n=1

f̃n(t) sin

(√
λn

Kμ

x

)
, (50)

where f̃n(t) is given by (26).
From relations (49), (50), (26) and (38), one obtains

∞∑
n=1

[
D

μ,ν

0+ un(t) + λnun(t) − f̃n(t)
]

sin

(√
λn

Kμ

x

)
= 0, (51)

which is satisfied if

D
μ,ν

0+ un(t) + λnun(t) − f̃n(t) = 0, ∀n ∈ N. (52)

Applying the Laplace transform method, we obtain

sμL[un(t)](s) − s−ν(1−μ)
(
I

(1−ν)(1−μ)

0+ un

)
(0+) + λnL[un(t)](s) − L[f̃n(t)](s) = 0. (53)

From condition (40) it follows that
(
I

(1−ν)(1−μ)

0+ un

)
(0+) = 0, so that recalling the result from

lemma 2 we find

un(t) = (
E−λn;1,1

0+;μ,μ f̃n

)
(t). (54)

8
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Thus, the solution of equation (38) is given by

U2(x, t) =
∞∑

n=1

(
E−λn;1,1

0+;μ,μ f̃n

)
(t) sin

(√
λn

Kμ

x

)
. (55)

Finally, employing relations (29), (33), (48) and (55), we prove theorem 1. �

Corollary 1. For ν = 1 (Caputo time fractional derivative) and h1(t) = h2(t) = 0, the
solution becomes

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
+

∞∑
n=1

(E−λn;1,1
0+;μ,μ fn)(t) sin

(nπx

l

)
, (56)

where

an(t) = c̃nEμ(−λnt
μ) (57)

and

fn(t) = 2

l

∫ l

0
f (x, t) sin

(nπx

l

)
dx, (58)

where c̃n is given by (25) in which g̃(x) = g(x).

Remark 1. Solution (56) is equivalent to those obtained by Sandev and Tomovski in
theorem 1 from [23] for used r(x) = 1, p(x) = Kμ, q(x) = 0, h1(t) = h2(t) = 0,
a1 = a2 = 1, b1 = b2 = 0, 0 < α < 1.

Note that if in equation (15) we put μ = ν = 1 the classical diffusion equation yields
[67], whose solution can be obtained directly from theorem 1.

Example 1. The time fractional differential equation

D
μ,ν

0+ u(x, t) = Kμ

∂2

∂x2
u(x, t), t > 0, (59)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (60)

and initial condition(
I

(1−ν)(1−μ)

0+ u(x, t)
)
(0+) = g(x), (61)

where 0 < μ < 1, 0 � ν � 1 and 0 � x � l, has a solution of the form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
. (62)

Here, an(t) is given by relation (24), in which g̃(x) = g(x). Indeed, if in theorem 1 we
substitute f (x, t) = 0 and h1(t) = h2(t) = 0, we obtain relation (62).

Remark 2. Note that for ν = 1, solution (62) has the form

u(x, t) =
∞∑

n=1

c̃nEμ

(
−Kμ

n2π2

l2
tμ
)

sin
(nπx

l

)
, (63)

where c̃n is given by (25) with g̃(x) = g(x). This solution can be obtained from corollary 2
in [23] (a2 → Kμ, α → μ, 0 < α < 1).

9
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For μ = ν = 1 one obtains the solution of the well-known classical diffusion
equation (67):

u(x, t) =
∞∑

n=1

c̃n e−Kμ
n2π2

l2
t sin

(nπx

l

)
. (64)

Example 2. The time fractional diffusion equation

D
μ,ν

0+ u(x, t) = ∂2

∂x2
u(x, t) + atδ−1Eμ,δ (−btμ) , t > 0, (65)

with boundary conditions

u(x, t)|x=0 = 0, u(x, t)|x=l = 0, (66)

and initial condition(
I

(1−ν)(1−μ)

0+ u(x, t)
)
(0+) = g(x), (67)

where 0 < μ < 1, 0 � x � l, 0 < δ < 1, a and b > 0 are constants, has a solution of the
form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
+ 4atδ−1

∞∑
n=1

1

(2n − 1)π

·Eμ,δ(−btμ) − Eμ,δ

(− (2n−1)2π2

l2 tμ
)

(2n−1)2π2

l2 − b
sin

(
(2n − 1)πx

l

)
. (68)

Here,

an(t) = c̃nt
−(1−μ)(1−ν)Eμ,1−(1−μ)(1−ν)(−n2π2

l2
tμ) (69)

and c̃n is given by (25) with g̃(x) = g(x). Note that an extended source term of the
complex form occurring in equation (65) could stem from an anomalously relaxing background
(‘melting’). This could occur, for instance, in an aquifer backbone, along which small
channels feed the backbone stream (subsurface hydrology generally meets anomalous diffusion
dynamics [3]).

The solution of this equation can be obtained from theorem 1 if we take Kμ = 1,
f (x, t) = atδ−1Eμ,δ(−btμ) and h1(t) = h2(t) = 0. Indeed, the first term of relation (68) is
obtained directly from equation (48). From relations (23), (26) and (27), it follows that

fn(t) = 2

l

∫ l

0
atδ−1Eμ,δ (−btμ) sin

(nπx

l

)
dx = 2 [1 − (−1)n]

nπ
atδ−1Eμ,δ (−btμ) . (70)

By exchanging fn(t) in relation (55) and recalling relation (A.3), we obtain the second term of

(68). If for some value n = n0 the equivalence b = n2
0π

2

l2 is obeyed, then the solution contains
a term that can be obtained by using relation (A.4).

Remark 3. Since the asymptotic behaviour of the M–L function for t → ∞ is
given by Eμ,δ (−btμ) ∼ 1

b�(δ−μ)
t−μ (b > 0) [54] and 0 < μ < 1, 0 < δ < 1, then

t δ−1Eμ,δ (−atμ) ∼ 1
b�(δ−μ)

t−μ+δ−1 tends to zero for t → ∞. Thus, solution (68) shows a
power-law decay in time.

Example 3. The time fractional diffusion equation

D
μ,ν

0+ u(x, t) = ∂2

∂x2
u(x, t) + ktδ−1, t > 0, (71)

10
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with boundary conditions (66) and initial condition (67), where 0 < μ < 1, 0 � x � l,
0 < δ < 1, k is a constant, has a solution of the form

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
+ 4k�(δ)tμ+δ−1

∞∑
n=1

1

(2n − 1)π

·Eμ,μ+δ

(
− (2n − 1)2π2

l2
tμ
)

sin

(
(2n − 1)πx

l

)
. (72)

Here, an(t) is given by (69).
This result can be proved analogously to corollary 2, and by the help of relation (A.7).

Since 0 < μ < 1 and 0 < δ < 1, then tμ+δ−1Eμ,μ+δ

(
− (2n−1)2π2

l2 tμ
)

∼ 1
(2n−1)2π2

l2
�(δ)

· t−1+δ for

t → ∞. Solution (72) thus shows a power-law decay, as well.

Remark 4. Note that if f (x, t) = k · t−β

�(1−β)
(0 < β < 1), solution (72) has the following

form:

u(x, t) =
∞∑

n=1

an(t) sin
(nπx

l

)
+ 4ktμ−β

∞∑
n=1

1

(2n − 1)π

·Eμ,μ+1−β

(
− (2n − 1)2π2

l2
tμ
)

sin

(
(2n − 1)πx

l

)
, (73)

where an(t) is given by (69). Thus, in the long time limit (t → ∞) we have
tμ−βEμ,μ+1−β

( − (2n−1)2π2

l2 tμ
) ∼ 1

(2n−1)2π2

l2
�(1−β)

· t−β . Solution (73) again shows a power-

law decay, as it should.

4. Fractional diffusion equation defined in infinite domain

Let us now investigate the following time fractional diffusion equation in the infinite domain
−∞ < x < +∞:

D
μ,ν

0+ u(x, t) = Kμ

∂2

∂x2
u(x, t) + f (x, t), t > 0, (74)

with the boundary and initial conditions

u(±∞, t) = 0, t > 0 (75)(
I

(1−ν)(1−μ)

0+ u(x, t)
)
(0+) = g(x), −∞ < x < +∞. (76)

Similar problems with Caputo or R–L time fractional derivatives are considered in [1, 2,
24, 70, 71] and secondary references therein. The classical diffusion equation [67] can be
obtained by the choice μ = ν = 1 in equation (74).

Theorem 2. The fractional diffusion equation (74) with boundary conditions (75) and initial
condition (76) for 0 < μ < 1, 0 � ν � 1 has a summable solution

u(x, t) = 1√
2π

∫ ∞

−∞
t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)(−Kμk2tμ) · ĝ(k) · e−ıkx dk

+
1√
2π

∫ ∞

−∞

(
E−Kμk2;1,1

0+;μ,μ F
)
(k, t) · e−ıkx dk, (77)

where

ĝ(k) = F[g(x)] = 1√
2π

∫ ∞

−∞
g(x) eıkx dx (78)

11
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is the Fourier transform of g(x), and

F(x, s) = L[f (x, t)], F̃ (k, s) = F[F(x, s)], F (k, t) = L−1[F̃ (k, s)]. (79)

Proof. Application of the Laplace transform with respect to the time variable t in
equation (74) and via the initial condition (76), one obtains

sμU(x, s) − s−ν(1−μ)g(x) = Kμ

∂2

∂x2
U(x, s) + F(x, s), (80)

where U(x, s) = L [u(x, t)]. If we apply the Fourier transform with respect to the spatial
variable x in equation (80) and take into consideration the boundary conditions (75), we obtain

sμŨ(k, s) − s−ν(1−μ)ĝ(k) = −k2KμŨ(k, s) + F̃ (k, s). (81)

Here Ũ (k, s) = F [U(x, s)], F̃ (k, s) = F [F(x, s)], and we use the property
limx→±∞ ∂

∂x
u(x, t) = 0. Thus, we obtain

Ũ (k, s) = s−ν(1−μ)

sμ + k2Kμ

· ĝ(k) +
1

sμ + k2Kμ

· F̃ (k, s). (82)

Applying an inverse Laplace transform to relation (82) and via results from lemmas 1 and 2,
it follows that

U(k, t) = t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(−Kμk2tμ
)
ĝ(k) +

(
E−Kμk2;1,1

0+;μ,μ F
)
(k, t). (83)

Finally, by inverse Fourier transform of relation (83), we prove theorem 2.
�

Example 4. The time fractional diffusion equation

D
μ,ν

0+ u(x, t) = Kμ

∂2

∂x2
u(x, t), t > 0, (84)

with boundary conditions (75) and initial condition (76), where −∞ < x < +∞, has a
solution of the form

u(x, t) = 1√
2π

∫ ∞

−∞
t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(− Kμk2tμ
) · ĝ(k) · e−ıkx dk. (85)

Note that if g(x) = δ(x), from relation (A.14), solution (85) becomes

u(x, t) = t−(1−ν)(1−μ)

|x| · H
1,0
1,1

[ |x|2
Kμtμ

∣∣∣∣ (1 − (1 − ν)(1 − μ),μ)

(1, 2)

]
= t−(1−ν)(1−μ)

2|x| · H
1,0
1,1

[
|x|√
Kμtμ

∣∣∣∣ (1 − (1 − ν)(1 − μ),
μ

2 )

(1, 1)

]
. (86)

Thus, in case of the R–L time fractional derivative (ν = 0), this solution (86) reads

u(x, t) = t−(1−μ)

2|x| · H
1,0
1,1

⎡⎢⎣ |x|√
Kμtμ

∣∣∣∣∣∣∣
(
μ,

μ

2

])
(1, 1)

⎤⎥⎦ . (87)

In the case of a Caputo time fractional derivative (ν = 1), solution (86) assumes the form

u(x, t) = 1

2|x| · H
1,0
1,1

[
|x|√
Kμtμ

∣∣∣∣∣
(

1,
μ

2

)
(1, 1)

]
. (88)

The time evolution of solution (86) for μ = 1/2, Kμ = 1, and different values of ν is shown
in figures 1 and 2. The plots are made by using expansion (A.10) in Mathematica.

12
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Figure 1. Graphical representation of solution (86) for μ = 1/2, Kμ = 1, ν = 0 (lower line),
ν = 1/4, ν = 1/2, ν = 3/4, ν = 1 (upper line); (a) t = 1; (b) t = 10.

(a)

4 2 0 2 4
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
x,

t

(b)

4 2 0 2 4
x

0

0.2

0.4

0.6

0.8
u

x,
t

(c)

4 2 0 2 4
x

0

0.2

0.4

0.6

u
x,

t

Figure 2. Graphical representation of solution (86) for μ = 1/2, Kμ = 1, t = 0.1 (upper line),
t = 1, t = 10 (lower line); (a) ν = 1 (see [1]); (b) ν = 1/2; (c) ν = 0.

Furthermore, if ν = μ = 1 from relation (86) we obtain the solution of the classical
diffusion equation, i.e.

u(x, t) = 1

2|x| · H
1,0
1,1

[
|x|√
Kμt

∣∣∣∣ (1, 1
2 )

(1, 1)

]
= 1√

4πKμt
· e− x2

4Kμt . (89)

This solution for Kμ = 1 is shown in figure 3.
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Figure 3. Graphical representation of solution (89) for μ = 1, Kμ = 1, t = 0.1 (upper line),
t = 1, t = 10 (lower line).

Remark 5. The asymptotic behaviour of solution (85) follows from relations (A.16), (A.17),
(A.18), (A.19), (A.20). Thus, one can obtain

u(x, t) ∼ 1

2
√

(2 − μ)π
·
(μ

2

) (1−μ)(1−2ν)

2−μ · |x| (1−μ)(1−2ν)

2−μ · (Kμtμ
)− (1−ν)(1−μ)+1/2

2−μ

× t−(1−ν)(1−μ) · exp

[
−2 − μ

2

(μ

2

) μ

2−μ |x| 2
2−μ

(
Kμtμ

)− 1
2−μ

]
. (90)

If ν = 1, result (90) is equivalent to that obtained, for example, in [1, 72], i.e.

u(x, t) ∼ 1

2
√

(2 − μ)π
·
(μ

2

) μ−1
2−μ · |x| μ−1

2−μ · (Kμtμ
)− 1

2(2−μ)

· exp

[
−2 − μ

2

(μ

2

) μ

2−μ |x| 2
2−μ

(
Kμtμ

)− 1
2−μ

]
. (91)

Moreover, if μ = 1, from equation (91) we obtain solution (89) of the classical diffusion
equation.

Example 5 (Calculation of fractional moments). The fractional moments of the Cauchy
problem of example 4 with g(x) = δ(x) has the following form:

〈|x|ξ 〉 = 2
∫ ∞

0
xξu(x, t) dx = t−(1−ν)(1−μ)

(
Kμtμ

)ξ/2 · �(1 + ξ)

�
(
1 − (1 − ν)(1 − μ) + μξ

2

) . (92)

Indeed, using solution (86) we obtain

〈|x|ξ 〉 = t−(1−ν)(1−μ)

∫ ∞

0
xξ−1 · H

1,0
1,1

[
x√

Kμtμ

∣∣∣∣ (1 − (1 − ν)(1 − μ),
μ

2 )

(1, 1)

]
dx. (93)

Application of the integral (A.13) produces (92). Note that for ξ → 0 we obtain

lim
ξ→0

〈|x|ξ 〉 = 1

�(1 − (1 − ν)(1 − μ))
· t−(1−ν)(1−μ), (94)

i.e. the function u is not normalized (see the discussion in section 3). If ν = 0, we find
limξ→0〈|x|ξ 〉 = 1

�(μ)
· t−(1−μ), and if ν = 1 we obtain limξ→0〈|x|ξ 〉 = 1, which corresponds

to the normalization of the distribution function.

14
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When ξ → 2 we obtain

lim
ξ→2

〈|x|ξ 〉 = 2

�(1 + μ − (1 − ν)(1 − μ))
· Kμ · tμ−(1−ν)(1−μ); (95)

we obtain the regular variance of the anomalous diffusion process. Note that if ν = 0 we obtain
limξ→2

〈|x|ξ 〉 = 2
�(2μ)

·Kμ · t−1+2μ and for ν = 1 it follows that limξ→2
〈|x|ξ 〉 = 2

�(1+μ)
·Kμ · tμ.

In the limit μ = 1 the linear time dependence of the mean square displacement is recovered,
i.e. 〈x2〉 = 2Kμt .

Remark 6. From relation (92) one obtains the general expression〈
x2n
〉 = tnμ−(1−ν)(1−μ)Kμ

n · (2n)!

� (1 + nμ − (1 − ν)(1 − μ))
, (96)

where n ∈ N. If we divide both sides of relation (96) by (2n)! and sum over n, we obtain the
following interesting result:

∞∑
n=0

〈x2n〉
(2n)!

= t−(1−ν)(1−μ)

∞∑
n=0

(Kμtμ)n

� (nμ + 1 − (1 − ν)(1 − μ))

= t−(1−ν)(1−μ)Eμ,1−(1−ν)(1−μ)

(
Kμtμ

)
. (97)

Note that for ν = 1 the known result 〈x2n〉 = (2n)! Kμ
ntnμ

�(1+nμ)
yields (see [1, 73]).

5. Fractional diffusion equation with a singular term

Let us now consider the following fractional diffusion equation with a singular term:

D
μ,ν

0+ u(x, t) = Kμ

∂2

∂x2
u(x, t) + δ(x) · t−β

�(1 − β)
, t > 0, (98)

with boundary conditions (75) and initial condition(
I

(1−ν)(1−μ)

0+ u(x, t)
)
(0+) = δ(x), −∞ < x < +∞, (99)

where −∞ < x < +∞, β > 0.

Corollary 2. Equation (98) with boundary conditions (75) and initial condition (99) has a
solution expressed via the H-function

u(x, t) = t−(1−ν)(1−μ)

2|x| · H
1,0
1,1

[
|x|√
Kμtμ

∣∣∣∣ (1 − (1 − ν)(1 − μ),
μ

2 )

(1, 1)

]

+
t−(β−μ)

2|x| · H
1,0
1,1

[
|x|√
Kμtμ

∣∣∣∣ (1 − (β − μ),
μ

2 )

(1, 1)

]
. (100)

Proof. This result can be obtained from theorem 2 simply by exchanging f (x, t) =
δ(x) t−β

�(1−β)
, g(x) = δ(x), and from relations (A.7) and (A.15). �

Remark 7. When ν = 1 and β = μ one obtains

u(x, t) = 1

|x| · H
1,0
1,1

[
|x|√
Kμtμ

∣∣∣∣ (1,
μ

2 )

(1, 1)

]
. (101)

Solution (100) for β = μ = 1/2, Kμ = 1, and different values of ν is shown in figure 4.
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Figure 4. Graphical representation of solution (100) for β = μ = 1/2, Kμ = 1, t = 0.1 (upper
line), t = 1, t = 10 (lower line); (a) ν = 1; (b) ν = 1/2; (c) ν = 0.

Remark 8. From relations (A.16), (A.17), (A.18), (A.19), (A.20), the asymptotic behaviour
of solution (100) follows as

u(x, t) ∼ 1

2
√

(2 − μ)π
·
(μ

2

) (1−μ)(1−2ν)

2−μ · |x| (1−μ)(1−2ν)

2−μ · (Kμtμ
)− (1−ν)(1−μ)+1/2

2−μ

× t−(1−ν)(1−μ) · exp

[
−2 − μ

2

(μ

2

) μ

2−μ |x| 2
2−μ

(
Kμtμ

)− 1
2−μ

]
+

1

2
√

(2 − μ)π
·
(μ

2

) 2β−μ−1
2−μ · |x| 2β−μ−1

2−μ · (Kμtμ
)− β−μ+1/2

2−μ · t−(β−μ)

× exp

[
−2 − μ

2

(μ

2

) μ

2−μ |x| 2
2−μ

(
Kμtμ

)− 1
2−μ

]
. (102)

If ν = 1 and β = μ, result (90) becomes

u(x, t) ∼ 1√
(2 − μ)π

·
(μ

2

) μ−1
2−μ · |x| μ−1

2−μ · (Kμtμ
)− 1

2(2−μ)

· exp

[
−2 − μ

2

(μ

2

) μ

2−μ |x| 2
2−μ

(
Kμtμ

)− 1
2−μ

]
. (103)

Remark 9. What is the condition for which the solution u(x, t) of equation (98) is a probability
distribution function with normalization

∫∞
−∞ u(x, t) dx = 1. Integrating

∫∞
−∞ . . . dx both

sides of equation (98) and using limx→±∞ ∂
∂x

u(x, t) = 0, one obtains

D
μ,ν

0+ 1 = t−β

�(1 − β)
, t > 0. (104)
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From relations (6) and (4) it follows that

t−μ

�(1 − μ)
= t−β

�(1 − β)
, t > 0, (105)

such that we obtain the requirement β = μ. In this case equation (98) includes the initial
condition for the R–L part of the fractional operator.

6. Conclusions

Exact solutions of different variants of a time fractional diffusion equation with Hilfer-
generalized time fractional derivative with order 0 < μ < 1 and type 0 � ν � 1 were
obtained. These solutions are expressed in terms of M–L type functions, H-functions, the
integral operator (14), and a complete set of eigenfunctions of the Sturm–Liouville problem.
It is shown that the solutions of the corresponding classical diffusion equation and fractional
diffusion equations with pure Caputo or R–L time fractional derivative are particular cases of
the solution of the considered equations. Several special cases are investigated. An inverse-
power law decay of the solutions in the long time limit is shown. Fractional moments of
the fundamental solution of the fractional diffusion equation with a generalized R–L time
fractional derivative are calculated. A fractional diffusion equation with a singular term is
considered, as well. The asymptotic behaviour of the solutions are found. Some previously
obtained results are recovered.

We believe that the generalized diffusion equation with its solutions in direct and
transformed spaces will be helpful for the evaluation of data from complex systems, in
particular, in the context of relaxation dynamics in glassy systems or aquifer problems.
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Appendix. Mittag–Leffler and Fox’s H-functions

The standard M–L function, introduced by Mittag–Leffler, is defined by [38]

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, (A.1)

where (z ∈ C; �(α) > 0). Later, Wiman [39], Agarwal [40], Humbert [41], and Humbert
and Agarwal [42] introduced and investigated the following two-parameter generalized M–L
function:

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
, (A.2)

where (z, β ∈ C; �(α) > 0). The M–L functions (A.1) and (A.2) are entire functions of order
ρ = 1/�(α) and type 1. Note that Eα,1(z) = Eα(z). These functions are generalization of the
exponential, hyperbolic and trigonometric functions since E1,1(z) = ez, E2,1(z

2) = cosh(z),
E2,1(−z2) = cos(z) and E2,2(−z2) = sin(z)/z. For the M–L function (A.2), the following
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formula is true [74]:∫ t

0
τα−1Eα,α (−aτα) (t − τ)β−1Eα,β (−b(t − τ)α) dτ

= Eα,β (−btα) − Eα,β (−atα)

a − b
tβ−1, a �= b. (A.3)

When a = b, from relation (A.3) one easily obtains that [53]∫ t

0
τα−1Eα,α (−aτα) (t − τ)β−1Eα,β (−a(t − τ)α) dτ = tα+β−1Eα,β (−atα) . (A.4)

The Laplace transform of the M–L function is given by [49–51]

L[tβ−1Eα,β(±atα)] =
∫ ∞

0
e−st tβ−1Eα,β(±atα) dt = sα−β

sα ∓ a
, (A.5)

where �(s) > |a|1/α .
Prabhakar [45] introduced the three-parameter generalized M–L function

E
γ

α,β(z) =
∞∑

k=0

(γ )k

�(αk + β)

zk

k!
, (A.6)

where β, γ, z ∈ C, �(α) > 0, and (γ )k is the Pochhammer symbol. It is an entire function of
order ρ = 1/�(α) and type 1. Note that E1

α,β(z) = Eα,β(z). For the M–L function (A.6) the
following formula is true [75]:∫ t

0
τβ−1(t − τ)μ−1Eγ

α,μ (ω(t − τ)α) dτ = �(β)tμ+β−1Eα,μ+β (ωtα) . (A.7)

Later, Srivastava and Tomovski introduced the four-parameter generalized M–L
function [53]

E
γ,κ

α,β (z) =
∞∑

n=0

(γ )κn

�(αn + β)
· zn

n!
, (A.8)

where (z, β, γ ∈ C; �(α) > max{0,�(κ) − 1}; �(κ) > 0) and (γ )κn is a notation
of the Pochhammer symbol. It is an entire function of order ρ = 1

�(α−κ)+1 and type

σ = 1
ρ
big(

{�(α)}�(κ)

{�(α)}�(α)

)ρ
[53]. Note that E

γ,1
α,β(z) = E

γ

α,β(z).

The Fox H-function (or simply the H-function) is defined by the Mellin–Barnes integral
[60, 76]

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣ (a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
= Hm,n

p,q

[
z

∣∣∣∣ (ap,Ap)

(bq, Bq)

]
= 1

2πı

∫
�

θ(s)zs ds, (A.9)

where θ(s) =
∏m

j=1 �(bj −Bj s)
∏n

j=1 �(1−aj +Aj s)∏q

j=m+1 �(1−bj +Bj s)
∏p

j=n+1 �(aj −Aj s)
, 0 � n � p, 1 � m � q, ai, bj ∈ C,

Ai, Bj ∈ R
+, i = 1, . . . , p, j = 1, . . . , q. The contour � starting at c − ı∞ and ending

at c + ı∞ separates the poles of the function �(bj + Bjs), j = 1, . . . , m, from those of the
function �(1 − ai − Ais), i = 1, . . . , n. The expansion for the H-function (A.9) is given
by [76]
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Hm,n
p,q

[
z

∣∣∣∣(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
=

m∑
h=1

∞∑
k=0

∏m
j=1,j �=h �

(
bj − Bj

bh+k

Bh

)∏n
j=1 �

(
1 − aj + Aj

bh+k

Bh

)∏q

j=m+1 �
(
1 − bj + Bj

bh+k

Bh

)∏p

j=n+1 �
(
aj − Aj

bh+k

Bh

)
· (−1)kz(bh+k)/Bh

k!Bh

. (A.10)

The H-function has the following property [76]:

Hm,n
p,q

[
zδ

∣∣∣∣(a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
= 1

δ
· Hm,n

p,q

[
z

∣∣∣∣(a1, A1/δ), . . . , (ap,Ap/δ)

(b1, B1/δ), . . . , (bq, Bq/δ)

]
,

(A.11)

where δ > 0. It is related with the two-parameter M–L function in the following way [1]:

Eα,β(−z) = H
1,1
1,2

[
z

∣∣∣∣ (0, 1)

(0, 1), (1 − β, α)

]
. (A.12)

The Mellin transform of the H-function is given by∫ ∞

0
xξ−1Hm,n

p,q

[
ax

∣∣∣∣ (a1, A1), . . . , (ap,Ap)

(b1, B1), . . . , (bq, Bq)

]
dx = a−ξ θ(−ξ), (A.13)

where θ(−ξ) is defined in relation (A.9).
The Mellin-cosine transform of the H-function is given by [76, 77]∫ ∞

0
kρ−1 cos(kx)Hm,n

p,q

[
akδ

∣∣∣∣ (ap,Ap)

(bq, Bq)

]
dk

= π

xρ
H

n+1,m
q+1,p+2

[
xδ

a

∣∣∣∣∣ (1 − bq, Bq),
( 1+ρ

2 , δ
2

)
(ρ, δ), (1 − ap,Ap),

( 1+ρ

2 , δ
2

) ] , (A.14)

where �(ρ+δ min1�j�m

( bj

Bj

))
> 1, xδ > 0, �(ρ+δ max1�j�n

( aj −1
Aj

))
< 3

2 , | arg(a)| < πθ/2,

θ > 0, θ = ∑n
j=1 Aj −∑p

j=n+1 Aj +
∑m

j=1 Bj −∑q

j=m+1 Bj . Thus, by using relations (A.12)
and (A.9), the cosine transform (A.14) of the two-parameter M–L function is given in terms
of the H-function, i.e.∫ ∞

0
cos(kx)Eα,β

(−ak2
)

dk = π

x
H

2,1
3,3

[
x2

a

∣∣∣∣ (1, 1), (β, α), (1, 1)

(1, 2), (1, 1), (1, 1)

]
= π

x
H

1,0
1,1

[
x2

a

∣∣∣∣ (β, α)

(1, 2)

]
. (A.15)

The asymptotic expansion of the Fox H-function H
1,0
1,1 (z) for large z is [72, 76, 78]

H
1,0
1,1 (z) ∼ Bzα/m exp

(−mC1/mz1/m
)
, (A.16)

where

α = b1 − a1 + 1
2 , (A.17)

m = B1 − A1, (A.18)

C = (A1)
A1 (B1)

B1 , (A.19)

B = (2π)−
1
2 Cα/mm−1/2 (A1)

−a1+1/2 (B1)
b1−1/2 . (A.20)
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