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In many biological and small scale technological applications particles may transiently bind to a
cylindrical surface. In between two binding events the particles diffuse in the bulk, thus produc-
ing an effective translation on the cylindrical surface. We here derive the effective motion on the
surface allowing for additional diffusion on the cylindrical surface itself. We find explicit solutions
for the number of adsorbed particles at one given instant, the effective surface displacement, as well
as the surface propagator. In particular sub- and superdiffusive regimes are found, as well as an effec-
tive stalling of diffusion visible as a plateau in the mean squared displacement. We also investigate the
corresponding first passage problem. © 2011 American Institute of Physics. [doi:10.1063/1.3593198]

I. INTRODUCTION

Bulk mediated surface diffusion (BMSD) defines the ef-
fective surface motion of particles, that intermittently adsorb
to a surface or diffuse in the contiguous bulk volume. As
sketched in Fig. 1 for a cylindrical surface, the particle, say,
starts on the surface and diffuses along this surface with dif-
fusion constant Ds . Eventually the particle unbinds, and per-
forms a three-dimensional stochastic motion in the adjacent
bulk, before returning to the surface. Typically, the values of
Db are significantly larger than Ds . The recurrent bulk excur-
sions, therefore, lead to decorrelations in the effective surface
motion of the particle, and thus to a more efficient exploration
of the surface.

Theoretically BMSD was previously investigated for
a planar surface in terms of scaling arguments,1, 2 master
equation schemes,3 and simulations.4 More recently the first
passage problem between particle unbinding and rebinding
for a free cylindrical surface was derived.5 Following our
short communication6 we present here in detail an exact
treatment of BMSD for a reactive cylindrical surface deriving
explicit expressions for the surface occupation, the effective
mean squared displacement (MSD) along the surface and the
returning time distribution from the bulk. In this approach
different dynamic regimes arise naturally from the physical
time scales entering our description. Thus, at shorter times
we derive the famed superdiffusive surface spreading with
surface MSD of the form 〈z2(t)〉 ∼ t3/2 (Refs. 7 and 8)
and the associated Cauchy form of the surface probability
density function (PDF). At longer times we obtain an a priori
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unexpected leveling off of the surface MSD, representing
a tradeoff between an increasing number of particles that
escape into the bulk and the increasing distance on the surface
covered in ever-longer bulk excursions for those particles that
do return to the surface. Only when the system is confined
by an outer cylinder eventually normal surface diffusion will
emerge. Apart from the Lévy walk-like superdiffusive regime
the rich dynamic behavior found here are characteristic of the
cylindrical geometry.

Nuclear magnetic resonance (NMR) measurements of
liquids in porous media are sensitive to the preferred orien-
tation of adsorbate molecules on the local pore surface such
that surface diffusion on such a non-planar surface produces
spin reorientations and remarkably long correlations times.9

Apart from pure surface diffusion the experiment by Stapf
et al. clearly showed the influence of BMSD steps and the
ensuing Lévy walk-like superdiffusion.10 More recently
NMR techniques were used to unravel the effective surface
diffusion on cylindrical mineralic rods,5 supporting, in par-
ticular, the first passage behavior with its typical logarithmic
dependence. BMSD on a cylindrical surface is also relevant
for the transient binding of chemicals to nanotubes11 and for
numerous other technological applications.2 In a biological
context, BMSD along a cylinder is intimately related to the
diffusive dynamics underlying gene regulation:12, 13 DNA
binding proteins diffuse not only in the bulk but intermittently
bind non-specifically to the DNA, approximately a cylinder,
and perform a one-dimensional motion along the DNA
chain, as proved experimentally.14, 15 The interplay between
bulk and effective surface motion improves significantly the
search process of the protein for its specific binding site on
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FIG. 1. A particle diffuses in the bulk (full lines) and intermittently binds to
a cylinder surface on which it may also diffuse (broken lines). This produces
an effective surface motion. We consider here the motion along the cylinder.
(Bottom right) frontal of diffusion between inner and outer cylinder.

the DNA. Similarly the net motion of motor proteins along
cytoskeletal filaments is also affected by bulk mediation.
Namely, the motors can fall off the cellular tracks and then
rebind to the filament after a bulk excursion.16 Outside the
biological cells the exchange behavior between cell surface
and surrounding bulk is influenced by bulk excursions, the
cylindrical geometry being of relevance for a large class of
rod-shaped bacteria (bacilli) and their linear arrangements.17

In porous media and for experimental setups desiring in-
creased signal strength, one might also consider arrays of
parallel cylinders, for instance, in a hexagonal arrangement
with respect to the cross section. In such an ordered array the
effective motion on one cylinder can be approximated by the
setup of Fig. 1, such that the radius b of the outer cylinder
would correspond to half of the distance between the central
axes of nearest neighbor cylinders. We note that the mean
first passage times for bulk mediated diffusion on a spherical
domain was reported recently.18

The dynamics revealed by our approach may also be im-
portant for the quantitative understanding of colonialization
processes on surfaces in aqueous environments when convec-
tion is negligible: suppose that bacteria stemming from a lo-
calized source start to grow on an offshore pipeline. From this
mother colony new bacteria will be budding and enter the con-
tiguous water. The Lévy dustlike distribution due to BMSD
will then make sure that bacteria can start a new colony, that
is disconnected from the former, and therefore give rise to a
much more efficient spreading dynamics over the pipeline.

In all these examples it is irrelevant which specific trajec-
tory the particles follow in the bulk, the interesting part is the
effective motion on the cylinder surface. We here analyze in
detail this bulk mediated surface diffusion on a long cylinder.

II. CHARACTERISTIC TIME SCALES AND IMPORTANT
RESULTS

In this section we introduce the relevant time scales of
the problem of bulk mediated surface diffusion of the cylin-
drical geometry presented in Fig. 1 and collect the most im-
portant results characteristic for the effective surface motion

of particles. As we are interested only in the motion along the
cylinder axis z, we consider the rotationally symmetric prob-
lem with respect to the polar angle θ that will therefore not
appear explicitly in the following expressions (compare also
Sec. III). Since the full analytical treatment of the problem
involves tedious calculations we first give an overview of the
most important results, leaving the derivations to Secs. III–V.
In Sec. VI we consider the corresponding first passage be-
haviour, before presenting our conclusions in Sec. VII. In the
Appendices we collect details on the derivations used in the
main text.

A. Characteristic time scales

Using the result [Eq. (48)] for the Fourier-Laplace trans-
form n(k, s) of the density of particles on the cylinder surface,
we compute the Laplace transform of the number of surface
particles,

Ns(s) =
∫ ∞

−∞
n(z, s)dz = n(k, s)

∣∣∣
k=0

= N0

s + κ

√
s

Db

�1(0, s)

�(0, s)

, (1)

where κ is a surface-bulk coupling constant defined below, Db

is the bulk diffusion constant,

�1(0, s) = K1(aξ )I1(bξ ) − I1(aξ )K1(bξ ),

�(0, s) = I0(aξ )K1(bξ ) + K0(aξ )I1(bξ ),
(2)

and ξ ≡ √
s/Db. The Iν and Kν denote modified Bessel func-

tions. We define the Laplace and Fourier transforms of the
surface density n(z, t) through

n(k, t) = F {n(z, t)} =
∫ ∞

−∞
eikzn(z, t)dz (3)

and

n(z, s) = L {n(z, t)} =
∫ ∞

0
e−st n(z, t)dt. (4)

Here and in the following we express the transform of a
function by explicit dependence on the Fourier or Laplace
variable, thus, n(k, s) is the Fourier-Laplace transform of
n(z, t).

From expression (1) we recognize that in the limit
κ → 0 the number of particles on the cylindrical surface
does not change, i.e., N (t) = N0. The coupling parameter
according to Eq. (49) is connected to the unbinding time
scale τoff, the bulk diffusivity Db, and the binding rate
kb through κ = Db/[kbτoff]. Vanishing κ , therefore, corre-
sponds to an infinite time scale for unbinding. This observa-
tion allows us to introduce a characteristic coupling time

tκ ≡ Db

κ2
= k2

bτ
2
off

Db
. (5)

Note that the binding constant kb has dimension cm/sec (see
Sec. III). As in the governing equations the coupling constant
κ and the bulk diffusivity Db are the relevant parameters, the
characteristic time tκ in a scaling sense is uniquely defined.
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In Eq. (5), kb times τoff defines a typical length scale for a
concentration gradient close to the surface. The time scale tκ
is characteristic for the equilibration time of such a gradient
between the surface and the vicinal bulk of the system. When
the coupling between bulk and cylinder surface is weak, κ

→ 0, the corresponding coupling time tκ diverges. It vanishes
when the coupling is strong, κ → ∞.

While the time scale tκ is characteristic of the bulk-
surface exchange, the geometry of the problem imposes two
additional characteristic times. Namely, the inner and outer
cylinder radii involve the time scales

ta ≡ a2

Db
(6)

and

tb ≡ b2

Db
, (7)

respectively. By definition, tb is always larger than ta . For
times shorter than the scale ta a diffusing particle behaves as
if it were facing a flat surface, while for times longer then
ta it can sense the cylindrical shape of the surface. Similarly,
tb defines the scale when a particle starts to engage with the
outer cylinder and, therefore, senses the confinement. With
the help of these time scales we can rewrite expression (1) for
the number of surface particles in the form

Ns(s) = N0t1/2
κ

s1/2((stκ )1/2 + �1(0, s)/�(0, s))
, (8)

where

�1(0, s) = K1(
√

sta)I1(
√

stb) − I1(
√

sta)K1(
√

stb) (9)

and

�(0, s) = I0(
√

sta)K1(
√

stb) + K0(
√

sta)I1(
√

stb). (10)

From the characteristic time scales tκ , ta , and tb we can
construct the three limits:

(i) Strong coupling limit

tκ 	 ta 	 tb; (11)

here the shortest time scale is the coupling time. This regime
is the most interesting as it leads to the transient Lévy walk-
like superdiffusive behavior.

(ii) Intermediate coupling limit

ta 	 tκ 	 tb; (12)

here the superdiffusive regime is considerably shorter, how-
ever, an interesting transition regime is observed.

(iii) Weak coupling limit

ta 	 tb 	 tκ . (13)

To limit the scope of this paper we will not consider this latter
case in the following. However, we note that for t 	 tb the
behavior will be similar to the t 	 tκ part of the intermediate
coupling limit (ii).

B. Important results

We now discuss the results for the most important quan-
tities characteristic of the effective surface motion. The dy-
namic quantities we consider are the number of particles
Ns(t), that are adsorbed to the inner cylinder surface at given
time t ; as well as the one-particle mean squared displacement

〈z2(t)〉 = 1

N0

∫ ∞

−∞
z2n(z, t)dz. (14)

This quantity is biased by the fact that an increasing amount
of particles is leaving the surface. To balance for this loss and
quantify the effective surface motion for those particles that
actually move on the surface, we also consider the “normal-
ized” mean squared displacement

〈z2(t)〉norm = 1

Ns(t)

∫ ∞

−∞
z2n(z, t)dz. (15)

The detailed behavior of these quantities will be derived in
what follows, and we will also calculate the effective surface
concentration n(z, t) itself. Here we summarize the results for
the surface particle number and the surface mean squared dis-
placements.

1. Strong coupling limit

In Table I we summarize the behavior in the four relevant
time regimes for the case of strong coupling. The evolution of
the number of particles on the surface turns from an initially
constant behavior to an inverse square root decay when the

TABLE I. Effective surface diffusion, strong coupling limit. For the different regimes we list the number of
particles Ns (t) on the surface, the surface mean squared displacement 〈z2(t)〉, and the normalized mean squared
displacement 〈z2(t)〉norm. C = exp(γ ) ≈ 1.78107 where γ is Euler’s constant.

Time regime Ns (t) 〈z2(t)〉 〈z2(t)〉norm

t 	 tκ N0 2Dst + 4

3
√

π tκ
Dbt3/2 2Dst + 4

3
√

π tκ
Dbt3/2

tκ 	 t 	 ta

√
tκ
π

N0

t1/2
2Dstκ + 2

√
tκ√
π

Dbt1/2 2
√

π tκ Dst1/2 + 2Dbt

ta 	 t 	 tb
1

2

√
ta tκ

N0

t
ta tκ Ds

1

t
ln

(
4t

Cta

)
+ √

ta tκ Db 2
√

ta tκ Ds ln

(
4t

Cta

)
+ 2Dbt

tb 	 t 2

√
ta tκ
tb

N0
8ta tκ

t2
b

Ds t + 4
√

ta tκ
tb

Dbt 4

√
ta tκ
tb

Ds t + 2Dbt
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TABLE II. Effective surface diffusion, intermediate coupling limit.

Time regime Ns (t) 〈z2(t)〉 〈z2(t)〉norm

t 	 ta N0 2Dst + 4

3
√

π tκ
Dbt3/2 2Dst + 4

3
√

π tκ
Dbt3/2

ta 	 t < tc 	 tκ N0 2Dst + 2Dbt2

tc ln2(4t/[C2ta])
2Dst + 2Dbt2

tc ln2(4t/[C2ta])

ta 	 tc < t 	 tκ transition to �1/t transition to �const transition to �t

tκ 	 t 	 tb
1

2

√
ta tκ

N0

t
ta tκ Ds

1

t
ln

(
4t

Cta

)
+ √

ta tκ Db 2
√

ta tκ Ds ln

(
4t

Cta

)
+ 2Dbt

tb 	 t
2
√

ta tκ
tb

N0
8ta tκ

t2
b

Ds t + 4

√
ta tκ
tb

Dbt 4

√
ta tκ
tb

Ds t + 2Dbt

particles engage into surface-bulk exchange. At longer times,
the escape of particles to the bulk becomes faster and follows
a 1/t law. Eventually the confinement by the outer cylinder
comes into play and we reach a stationary limit.

The mean squared displacement has a very interesting
initial anomalously diffusive behavior �t3/2.7, 8 This superdif-
fusion arises due to mediation by bulk excursions resulting in
the effective Cauchy distribution

n(z, t) ∼ N0κt

π (z2 + κ2t2)
. (16)

In this initial regime we can use a simple scaling argument
to explain this superdiffusive behavior, compare the discus-
sion in Ref. 1. Thus, once detached from the surface a par-
ticle returns to the surface with a probability distributed ac-
cording to �t−1/2, as here we are in the regime t 	 ta , for
which the BMSD dynamics still senses a flat surface. Due
to the diffusive coupling z2 � t in the bulk the effective dis-
placement along the cylinder is then distributed according
to �|z|−1, giving rise to a probability density �z−2. The
Cauchy distribution thus arises due to this change of vari-
ables in the probability densities: for the first return we have
℘ret(t) � t−3/2, and we say that the surface displacement cor-
responds to n(z)dz = ℘(t)dt . With z2 � t this implies n(z) ∼
℘(t(z))dt/dz ∼ z−3 × z ∼ z−2.

Later, the mean squared displacement turns over to a
square root behavior corresponding to subdiffusion. As can be
seen from the associated normalized mean squared displace-
ment, this behavior is due to the escaping particles. At even
longer times the mean squared displacement reaches a plateau
value. This is a remarkable property of this cylindrical geom-
etry, reflecting a delicate balance between decreasing particle
number and increasing length of the bulk mediated surface
translocations. This plateau is the terminal behavior when no
outer cylinder is present. That is, even at infinite times, when
fewer and fewer particles are on the surface, the surface mean
squared displacement does not change. In the presence of the
outer cylinder the mean squared displacement eventually is
dominated by the bulk motion and acquires the normal linear
growth with time.

Combining the dynamics of the number of surface parti-
cles and the mean squared displacement we obtain the behav-

ior of the normalized mean squared displacement listed in the
last column.

2. Intermediate coupling limit

In the intermediate coupling limit the results are listed in
Table II. Also in this regime we observe the initial superdiffu-
sion and associated Cauchy form of the surface–particle con-
centration. The subsequent regime of intermediate times splits
up into two subregimes. This subtle turnover will be discussed
in detail below. The last two regimes exhibit the same behav-
ior as the corresponding regimes in the strong coupling limit.

C. Numerical evaluation

In Figs. 2 and 3 we show results from numerical Laplace
inversion of the exact expressions for the number of surface
particles and the surface mean squared displacement. We con-
sider both the strong and intermediate coupling cases. The
parameters fixing the time scales were chosen far apart from
each other to distinguish the different limiting behaviors com-
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FIG. 2. Time evolution of the number of surface particles obtained by nu-
merical Laplace inversion of Eq. (8), for the following cases: strong binding
with (green dashed-dotted line) and without (red full line) outer cylinder, and
intermediate binding in presence of the outer cylinder (blue dashed line). The
indicated characteristic time scales correspond to the cases of strong (bottom)
and intermediate (top) coupling.
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FIG. 3. Surface mean squared displacement obtained by numerical Laplace inversion of Eqs. (55) and (56), based on Eqs. (48) and (50). (Left) The graphs
show the various effective diffusion regimes 〈z2(t)〉 along the cylinder. Note the characteristic transient plateau, which is the terminal behavior in the absence
of a confining outer cylinder. (Right) Normalized function 〈z2(t)〉norm. The subregime ta < t < tc in the intermediate case distinctly shows a superdiffusive
behavior that is even steeper than the initial t3/2 scaling. We show the strong binding case with (red line) and without (green line) and outer cylinder, as well as
the case of intermediate binding with outer cylinder (blue line). The characteristic time scales connected with the associated curves denote the cases of strong
(bottom) and intermediate (top) coupling.

puted in Secs. IV and V. In all figures a vanishing surface
diffusivity (Ds = 0) is chosen for clarity.

For strong coupling the selected time scales are tκ
= 10−6, ta = 1, and tb = 106 in dimensionless units. There-
fore, the bulk diffusion constant becomes Db = a2/ta
= 25 for our choice a = 5. The coupling constant is
κ = a/

√
tatκ = 5 × 103, and the outer cylinder radius

becomes b = a/
√

tb/ta = 5 × 103.
In the intermediate regime we chose ta = 10−6, tκ = 1,

and tb = 106. This sets the bulk diffusivity to Db = 25 × 106

and the outer cylinder radius to b = 5 × 106. These values are
chosen such that we can plot the results for the intermediate
case alongside the strong coupling case.

Figure 2 shows the time evolution of the number of sur-
face particles, normalized to N0 = 1. For the strong coupling
case the value remains almost constant until t ≈ tκ and then
turns over to an inverse square root decay that lasts until
t ≈ ta . Subsequently, a t−1 behavior emerges. In the presence
of an outer cylinder, due to the confinement this inversely
time proportional evolution is finally terminated by a station-
ary plateau. In the intermediate coupling case similar behav-
ior is observed, apart from the two subregimes in the range at
intermediate times.

Figure 3 depicts the behavior of the surface mean squared
displacement. In the left panel the function 〈z2(t)〉 shows the
various regimes found in the strong and intermediate coupling
limits. The right panel of Fig. 3 shows the behavior of the nor-
malized surface mean squared displacement. Remarkably, the
intermediate coupling regime exhibits a superdiffusive behav-
ior in the range tc < t < ta that is even faster than the initial
t3/2 scaling. See Secs. IV and V for details.

III. COUPLED DIFFUSION EQUATIONS AND
GENERAL SOLUTION

In this section we state the polar symmetry of the problem
we want to consider and then formulate the starting equations

for our model. The general solution is presented in Fourier-
Laplace space. In the two subsequent sections we calculate
explicit results in various limiting cases, for strong and inter-
mediate coupling.

A. Starting equation and particle number
conservation

The full problem is spanned by the coordinates z mea-
sured along the cylinder axis, the radius r measured perpen-
dicular to the z axis, and the corresponding polar angle θ . We
are only interested in the effective displacement of particles
along the cylinder axis and therefore eliminate the θ depen-
dence. This can be consistently done in the following way. (i)
As initial condition we assume that initially the particles are
concentrated as a sharp δ(z) peak on the inner cylinder sur-
face, homogeneous in the angle coordinate θ . (ii) Our bound-
ary conditions are θ independent.

For the bulk concentration of particles in the volume
between the inner and outer cylinders this symmetry require-
ment simply means that we can integrate out the θ depen-
dence and consider this concentration as a function of z,
radius r , and time t : C = C(r, z, t). The physical dimension
of the concentration C is [C] = 1/cm3. On the surface of the
inner cylinder we measure the concentration by the density
n2D(z, t), which is of dimension [n2D] = 1/cm2. Note that
n2D(z, t) does not explicitly depend on θ . We average this
cylinder surface density over the polar angle and obtain the
line density n(z, t):

n(z, t) = a
∫ 2π

0
n2D(z, t)dθ = 2πan2D(z, t), (17)

such that [n] = 1/cm. Note that on the inner cylinder with
radius a the expression adθdz is the cylindrical surface in-
crement. The factor 2πa is important when we formulate the
reactive (sometimes also referred to as radiative or Robin)
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boundary condition on the inner cylinder connecting surface
line density n(z, t) and the volume density C(r, z, t).

Given the line density n, the total number Ns(t) of par-
ticles on the inner cylinder surface at given time t becomes

Ns(t) =
∫ 2π

0
adθ

∫ ∞

−∞
n2D(z, t)dz =

∫ ∞

−∞
n(z, t)dz.

(18)
We assume that initially N0 particles are concentrated in a δ-
peak on the cylinder surface at z = 0:

n(z, t)|t=0 = N0δ(z). (19)

Consequently, the initial bulk concentration vanishes every-
where on the interval a < r ≤ b such that

C(r, z, t)|t=0 = 0. (20)

Let us now specify the boundary conditions at the two
cylinder surfaces. At the outer cylinder (r = b) we impose a
reflecting boundary condition of the Neumann form

∂

∂r
C(r, z, t)|r=b = 0. (21)

In the case when we do not consider an outer cylinder
(b → ∞) this Neumann condition may be replaced by a nat-
ural boundary condition of the form

lim
r→∞ C(r, z, t) = 0. (22)

The reactive boundary condition on the inner cylinder
(r = a) is derived from a discrete random walk process in
Appendix A (compare also Ref. 19). Accordingly we balance
the flux away from the inner cylinder surface,

joff = 1

τoff
n2D(z, t) = 1

2πaτoff
n(z, t), (23)

by the incoming flux from the bulk onto the cylinder surface,

jon = lim
r→a

kbC(r, z, t). (24)

Here, τoff with dimension [τoff] = s is the characteristic time
scale for particle unbinding from the surface. It is proportional
to the Arrhenius factor of the binding free energy ε of the par-
ticles, exp(|ε|/[kB T ]), where kB T denotes the thermal energy
at temperature T . The binding rate kb, in contrast, has physi-
cal dimension [kb] = cm/s, which is typical for surface-bulk
coupling in cylindrical coordinates, compare the discussions
in Refs. 12, 13, and 19. For convenience, we collect the coef-
ficients in the reactive boundary condition (24) into the cou-
pling constant

μ ≡ 1

2πakbτoff
, (25)

such that our reactive boundary condition is finally recast into
the form

C(r, z, t)|r=a = μn(z, t). (26)

The time evolution of the bulk density C(r, z, t) is gov-
erned by the cylindrical diffusion equation

∂

∂t
C(r, z, t) = Db

(
1

r

∂

∂r

[
r

∂

∂r

]
+ ∂2

∂z2

)
C(r, z, t), (27)

valid on the domain a < r < b and −∞ < z < ∞. In
Eq. (27), Db is the bulk diffusion coefficient of dimension
[Db] = cm2/s. From a random walk perspective we can write
Db = 〈δξ 2〉/(6〈δτ 〉), where 〈δξ 2〉 is the average variance of
individual jumps, and 〈δτ 〉 is the typical time between con-
secutive jumps. As shown in Appendix A the dynamic equa-
tion for the line density n directly includes the incoming flux
term and is given by

∂

∂t
n = Ds

∂2

∂z2
n(z, t) + 2πaDb

∂

∂r
C(r, z, t)

∣∣∣∣
r=a

, (28)

where Ds denotes the surface diffusion coefficient. In many
realistic cases the magnitude of Ds is considerably smaller
than the bulk diffusivity Db.

15, 20 The coupling term connects
the surface density n to the bulk concentration C. The fact
that here the bulk diffusivity occurs as coupling term stems
from the continuum limit, in which the binding rate diverges,
and, therefore, the binding corresponds to the step from the
exchange site to the surface.

The diffusion equations (27) and (28) together with the
boundary conditions (21) and (26) as well as the initial con-
ditions (19) and (20) completely specify our problem. More-
over, the total number of particles is conserved. Namely, the
number of surface particles varies with time as

d Ns(t)

dt
= 2πaDb

∫ ∞

−∞

∂

∂r
C(r, z, t)

∣∣∣∣
r=a

dz, (29)

as can be seen from integration of Eq. (28) over z and noting
that n(|z| → ∞, t) = 0. For the number of bulk particles we
obtain

d Nb(t)

dt
= 2π Db

∫ b

a
rdr

∫ ∞

−∞
dz

1

r

∂

∂r

(
r

∂

∂r
C(r, z, t)

)

= 2π Db

∫ ∞

−∞

[(
r

∂

∂r
C(r, z, t)

)
r=b

−
(
r

∂

∂r
C(r, z, t)

)
r=a

]

= −2πaDb

∫ ∞

−∞

∂

∂r
C(r, z, t)

∣∣∣∣
r=a

dz. (30)

From these two relations we see that indeed the total number
of particles fulfills

d

dt
(Ns(t) + Nb(t)) = 0, (31)

and, therefore, Ns(t) + Nb(t) = N0.

B. Solution of the bulk diffusion equation

To solve Eq. (27) and the corresponding boundary and
initial value problem we use the Fourier-Laplace transform
method. The dynamic equation for C(r, k, s) is the ordinary
differential equation

d2

dr2
C(r, k, s) + 1

r

d

dr
C(r, k, s) − q2C(r, k, s) = 0, (32)
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where we use the abbreviation

q2 = k2 + s

Db
. (33)

The reactive boundary condition becomes

C(r, k, s)|r = a = μn(k, s), (34)

and for the reflective condition we find

d

dr
C(r, k, s)|r = b = 0. (35)

The general solution of Eq. (32) is given in terms of the
zeroth order modified Bessel functions I0 and K0 in the linear
combination

C(r, k, s) = AI0(qr ) + BK0(qr ). (36)

The constants A and B follow from the boundary conditions,
such that

AI0(qa) + BK0(qa) = μn(k, s) (37)

and

A
∂

∂r
I0(qr )

∣∣∣∣
r = b

+ B
∂

∂r
K0(qr )

∣∣∣∣
r =b

= 0. (38)

Using ∂ I0(qr )/∂r = q I1(qr ) and ∂K0(qr )/∂r = −q K1(qr ),
we can rewrite the latter relation:

Aq I1(qb) − Bq K1(qb) = 0. (39)

The two coefficients are, therefore, given by

A = K1(qb)

�(k, s)
μn(k, s), B = Iq (qb)

�(k, s)
μn(k, s), (40)

where we introduce the abbreviation

�(k, s) ≡ I0(qa)K1(qb) + I1(qb)K0(qa). (41)

Note that, due to the definition of the variable q the function
� indeed explicitly depends on the Laplace variable s. The
solution for the bulk density C in Fourier-Laplace domain is,
therefore, given by the expression

C(r, k, s) = μn(k, s)

�(k, s)
(K1(qb)I0(qr ) + I1(qb)K0(qr )).

(42)

C. Solution of the surface diffusion equation

In a similar fashion we obtain the Fourier-Laplace trans-
form of the dynamic equation for the surface density n,

namely

sn(k, s) − N0 = −k2 Dsn(k, s) + 2πaDb
∂

∂r
C(r, k, s)

∣∣∣∣
r=a

.

(43)

Defining the propagator of the homogeneous equation,

Gs(k, s) = 1

s + k2 Ds
, (44)

we find

n(k, s) = N0Gs(k, s) + Gs(k, s)2πaDb
∂

∂r
C(r, k, s)

∣∣∣∣
r=a

.

(45)

From Eq. (42) we obtain for the reactive boundary condition
that

∂

∂r
C(r, k, s)

∣∣∣∣
r=a

= −μn(k, s)
q�1(k, s)

�(k, s)
, (46)

where

�1(k, s) ≡ K1(qa)I1(qb) − I1(qa)K1(qb). (47)

Insertion of relation (46) into Eq. (45) produces the result

n(k, s) = N0

s + k2 Ds + κq
�1(k, s)

�(k, s)

. (48)

Here, we also define the coupling constant

κ ≡ 2πaμDb = Db

kbτoff
, (49)

which allows us to distinguish the regimes of strong, inter-
mediate, and weak bulk-surface coupling used in this work.
If we remove the outer cylinder, that enforces a finite cross-
section in the cylindrical symmetry, we obtain the following
simplified expression:

n(k, s) = N0

s + k2 Ds + κq
K1(qa)

K0(qa)

, (50)

as in the limit b → ∞, we have Iν(qb) → ∞ and Kν(qb)
→ 0. From the Fourier-Laplace transform (48) the number
of particles on the cylinder surface is given by

Ns(s) = n(k = 0, s), (51)

following the definition of the Fourier transform.
Plugging the result (48) into Eq. (42) we obtain the closed

form for the Fourier-Laplace transform of the bulk concentra-
tion,

C(r, k, s) = μN0

�(k, s)(s + k2 Ds + κq�1(k, s)/�(k, s))
(K1(qb)I0(qr ) + I1(qb)K0(qr ))

= N0

2πakbτoff

K1(qb)I0(qr ) + I1(qb)K0(qr )

�(k, s)(s + k2 Ds + κq�1(k, s)/�(k, s))
. (52)
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We note that the solutions for n(k, s) and C(k, s) indeed
fulfill the particle conservation,∫ ∞

−∞
n(z, t)dz + 2π

∫ ∞

−∞
dz
∫ b

a
rdr C(r, z, t) = N0

⇔ n(k, s)
∣∣∣
k=0

+ 2π

∫ b

a
rdr C(r, k, s)

∣∣∣
k=0

= N0

s
. (53)

Using the results for the surface propagator n(z, t)
[Eq. (48)] we characterize the effective surface diffusion on
the cylinder in terms of the single-particle mean squared dis-
placement

〈z2(t)〉 = N−1
0

∫ ∞

−∞
z2n(z, t)dz. (54)

In Fourier-Laplace domain, we re-express this integral as

〈z2(s)〉 = −N−1
0

∂2n(k, s)

∂k2

∣∣∣∣
k=0

. (55)

This mean squared displacement includes the unbinding dy-
namics of particles as manifested in the quantity Ns(t). We
can exclude this effect by defining the normalized mean
squared displacement

〈z2(t)〉norm = N0

Ns(t)
〈z2(t)〉. (56)

From above results for the effective surface propagator
we obtain the exact result for the surface mean squared dis-
placement in Appendix B. In what follows, however, for sim-
plicity of the argument we proceed differently. Namely, we
first approximate the effective surface propagator n(z, t) and
from the various limiting forms determine the surface mean
squared displacement. By comparison of the limits taken from
the general results derived in Appendix B, it can be shown that
both procedures yield identical results.

IV. EXPLICIT CALCULATIONS: STRONG COUPLING
LIMIT

In this section we consider the strong coupling limit
tκ 	 ta 	 tb, representing the richest of the three regimes.
Based on the result for the effective surface propagator
[Eq. (48)] in Fourier-Laplace space obtained in Sec. III we
now calculate the quantities characteristic of the effective mo-
tion on the cylinder surface, as mediated by transient bulk ex-
cursions. We consider the number of particles on the surface,
the axial mean squared displacement, as well as the surface
propagator. We divide the discussion into the four different
dynamic regimes defined by comparison of the involved time
scales tκ , ta , and tb.

A. Short times, t � tκ � ta � tb

The short time limit t 	 tκ 	 ta 	 tb corresponds to the
Laplace domain regime

stκ , sta, stb � 1. (57)

1. Surface propagator in Fourier-Laplace space

We first obtain the short time limit of the effective surface
propagator in Fourier-Laplace space. To this end we note that
the following inequalities hold:

qa = a

√
k2 + s

Db
≥ a

√
s

Db
= √

sta � 1, (58)

and thus we have

qa � 1 and qb � 1. (59)

For this case we use the following expansion of the Bessel
functions contained in the abbreviations �(k, s) and �1(k, s).
Namely, for z → ∞,

Iν(z) ∼ exp(z)√
2π z

, Kν(z) ∼
√

π

2z
exp(−z). (60)

From expressions (41) and (47) we find

�(k, s) ∼ �1(k, s) ∼ exp(q[b − a])

2q
√

ab
. (61)

Therefore, the surface propagator in Fourier-Laplace in the
short time limit reduces to the simplified form

n(k, s) ∼ N0

s + k2 Ds + κ
√

k2 + s/Db

. (62)

2. Number of particles on the surface

From the relation Ns(s) = n(k = 0, s) we obtain the
number of surface particles by the help of the above expres-
sion for the limiting form of n(k, s):

Ns(s) ∼ N0tκ
stκ + √

stκ
. (63)

Since stκ � 1 the leading behavior follows

Ns(s) ∼ N0

s
, (64)

i.e., we recover that the number of particles on the surface
remains approximately conserved in the short time regime,

Ns(t) ∼ N0. (65)

3. Surface mean squared displacement

The surface mean squared displacement is readily ob-
tained from the limiting form of the surface propagator (62)
by the help of relation (55). Namely, we obtain

〈z2(s)〉 ∼ 2Ds + Db/
√

stκ
(s + s/

√
stκ )2

. (66)

Since stκ � 1 the leading behavior corresponds to

〈z2(s)〉 ∼ 2Ds

s2
+ Db

t1/2
κ s5/2

, (67)
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from which the time-dependence

〈z2(t)〉 ∼ 〈z2(t)〉norm ∼ 2Dst

[
1 + 2

3π1/2

Db

Ds

(
t

tκ

)1/2
]

,

(68)
yields after Laplace inversion. As in this short time regime
Ns(t) ∼ N0, the normalized surface mean squared displace-
ment follows the same behavior. The occurrence of the 3/2
exponent (instead of the naively expected ballistic exponent 2
according to our scaling arguments for the central part of the
surface propagator following Eq. (16)) is due the finite range
of validity of the Cauchy law, as explained below.

Remarkably, result (68) contains a contribution growing
similar to �t3/2. This superdiffusive behavior becomes rel-
evant when Db � Ds , which is typically observed in many
systems. Thus, for DNA binding proteins the bulk diffusivity
may be a factor of 102 or more larger than the diffusion con-
stant along the DNA: for Lac repressor the bulk diffusivity is
of the order of 5.9 × 10−7cm2/s, while the one-dimensional
diffusion constant along the DNA surface ranges in between
2.1 × 10−10 to 9 × 10−10 cm2/sec.15, 20

4. Surface propagator in real space

We now turn to the functional form of the surface propa-
gator n(z, t) in real space at short times in the strong coupling
limit. We investigate this quantity in the limit Ds = 0 of van-
ishing surface diffusion.

In the current short time limit t 	 tκ 	 ta 	 tb we dis-
tinguish two parts of the surface density n. Let us start with the
central part defined by k2 � s/Db. The corresponding limit-
ing form of Eq. (62) is then given by

n(k, s) ∼ N0

s + κ|k| . (69)

The inverse Fourier-Laplace transform leads to the Cauchy
probability density function

n(z, t) ∼ N0κt

π (z2 + κ2t2)
. (70)

This central part of the surface propagator obeys the govern-
ing dynamic equation7, 21

∂

∂κt
n(z, t) = ∂

∂|z|n(z, t), (71)

with initial condition n(z, t = 0) = N0δ(z). Here, we defined
the space fractional derivative ∂/∂|z| in the Riesz-Weyl sense
whose Fourier transform takes on the simple form22

∫ ∞

−∞
eikz

(
∂

∂|z|n(z, t)

)
dz = −|k|n(k, t). (72)

Equation (70) and the corresponding dynamic Eq. (71)
are remarkable results, which are analogous to the findings in
Ref. 2 for a flat surface obtained from scaling arguments.23 It
says that the bulk mediation causes an effective surface mo-
tion whose propagator is a Lévy stable law of index 1. This be-
havior can be guessed from the scaling of the returning proba-
bility to the surface, together with the diffusive scaling z2 � t .

However, the resulting Cauchy distribution cannot have an in-
finite range, as the particle in a finite time only diffuses a finite
distance. The question, therefore, arises whether there exists
a cutoff of the Cauchy law and of what form this is.

The advantage of our exact treatment is that the Cauchy
law can be derived explicitly, but especially the transition to
other regimes studied. To this end we introduce the time-
dependent length scale

�C (t) =
√

Dbt, (73)

which turns out to define the range of validity of the Cauchy
region. Namely, while at distances z > �C (t) we observe a
cutoff of the Cauchy behavior, for z < �C (t) the Cauchy ap-
proximation is valid. Note that in this short time regime t < tκ
the Cauchy range scales as zmax ≈ √

Dbt such that z2 can in-
deed become significantly larger than κ2t2 at sufficiently short
times, and thus the power law asymptotics n(z, t) � z−2 in
Eq. (70) become relevant. From this Cauchy part we obtain
the superdiffusive contribution∫ �C (t)

−�C (t)

z2κt dz

π (z2 + κ2t2)
≈ 2

π
κ
√

Dbt3/2, (74)

to the mean squared displacement, that is consistent with the
exact forms (68) and (B24) [with Ds = 0]. Calculation of
the mean squared displacement, however, requires the k → 0
limit and thus involves the extreme wings of the distribution.
As the system evolves in time the central Cauchy part spreads.
Already in the regime tκ < t < ta we have Dbt < κ2t2, and
the asymptotic behavior �z−2 can no longer be observed.

To show how at very large |z| the Cauchy form of the
propagator is truncated we consider Eq. (62) for small wave
number k,

n(k, s) ∼ N0s1/2

s3/2 + λk2
, (75)

where λ = κ D1/2
b /2. In this limit the surface propaga-

tor n(z, t) interestingly fulfills the time fractional diffusion
equation24, 25

∂3/2

∂t3/2
n(z, t) = λ

∂2

∂z2
n(z, t), (76)

with the initial conditions n(z, t = 0) = N0δ(z) and
∂n(z, t)/∂t |t=0 = 0, the second defining the initial ve-
locity field. Here, the fractional Caputo derivative is defined
via its Laplace transform through26, 27

L

{
∂3/2

∂t3/2
n(z, t)

}
= s3/2n(z, s) − s1/2n(z, t = 0)

−s−1/2

(
∂

∂t
n(z, t)

)
t=0

. (77)

An equation of the form (76) can be interpreted as a retarded
wave (ballistic) motion.24, 28 We choose that the initial veloc-
ity field ṅ(z, t)|t=0 vanishes. It is easy to show that Eq. (76)
leads to the scaling 〈z2(t)〉 � t3/2 of the surface mean squared
displacement.

The inverse Fourier transform of Eq. (75) leads to

n(z, s) ∼ N0

2λ1/2s1/4
exp

(
− s3/4

λ1/2
|z|
)

. (78)

Downloaded 01 Jun 2011 to 129.187.254.46. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



204116-10 Chechkin et al. J. Chem. Phys. 134, 204116 (2011)

Inverse Laplace transform then yields

n(z, t) ∼ N0

2λ1/2t3/4
M

(
ζ,

3

4

)
, (79)

where we use the abbreviation

ζ = |z|
λ1/2t3/4

=
√

2
|z|

�C (t)

(
tκ
t

)1/4

, (80)

and where M(ζ, β) is the Mainardi function, defined in terms
of its Laplace transform as26, 29

M(ζ, β) = 1

2π i

∫
Br

dσ

σ 1−β
eσ−ζσβ

, 0 < β < 1. (81)

In the tails of the distribution, i.e., in the limit ζ � 1, we may
thus employ the asymptotic form of the Mainardi function,

M

(
r

β
, β

)
∼ a(β)r (β−1/2)/(1−β) exp(−b(β)r1/(1−β)),

(82)
for r → ∞, where

a(β) = 1√
2π (1 − β)

, b(β) = 1 − β

β
> 0. (83)

We then arrive at the asymptotic form

n(z, t) ∼ C1
N0|z|
λt3/2

exp

(
−C2

z4

λ2t3

)
, (84)

where C1 and C2 are positive constants. Thus, the Cauchy dis-
tribution in the central part is truncated by compressed Gaus-
sian tails decaying as exp(−z4/t3).30

B. Intermediate times tκ � t � ta � tb

The range of intermediate times tκ 	 t 	 ta 	 tb in the
Laplace domain corresponds to stκ 	 1 while sta, stb � 1.

1. Surface propagator in Fourier-Laplace space

As the characteristic time tκ does not appear in the ex-
pressions � and �1, the limiting form (62) is still valid in this
regime.

2. Number of particles on the surface

While Eq. (63) still holds, the leading behavior of Ns(t)
changes, as now stκ 	 1:

Ns(s) ∼ N0t1/2
κ

s1/2
, (85)

and thus

Ns(t) ∼ N0

π1/2

t1/2
κ

t1/2
. (86)

In this intermediate regime the number of surface particles
decays in a square root fashion with time t .

3. Surface mean squared displacement

In a similar fashion Eq. (66) remains valid, however, as
we now encounter the limit stκ 	 1 we obtain the following

time dependence,

〈z2(s)〉 ∼ 2Dstκ
s

+ Dbt1/2
κ

s3/2
. (87)

After Laplace inversion the slow square root behavior

〈z2(t)〉 ∼ 2Dstκ + 2

π1/2
Db

√
tκ t (88)

in time yields. As the number of surface particles is no longer
constant, we obtain the normalized form of the surface mean
squared displacement,

〈z2(t)〉norm ∼ 2Ds
√

π tκ t + 2Dbt : (89)

corrected for the square root loss of surface particles to the
bulk, the normalized surface mean squared displacement ex-
hibits normal diffusion.

4. Surface propagator in real space

In this intermediate time regime stκ 	 1 and sta, stb � 1
from expression (62) we obtain

n(k, s) ∼ N0
t1/2
κ√

s + Dbk2
. (90)

Recalling the translation theorem of the Laplace transform

f (s − a) ÷ eat f (t), (91)

and identifying f (s) = s−1/2, we readily find

n(k, t) ∼ N0

√
tκ
π t

exp(−Dbk2t), (92)

and thus obtain the quasi-Gaussian form

n(z, t) ∼ N0

√
tκ

4π2 Dbt2
exp

(
− z2

4Dbt

)
. (93)

This function is not normalized, corresponding to the
time evolution of the surface particle number Ns(t)
∼ N0

√
tκ/(π t).

C. Longer times tκ � ta � t � tb

In the regime of longer times tκ 	 ta 	 t 	 tb the corre-
sponding inequality in the Laplace domain reads stκ , sta 	 1
while stb � 1.

1. Surface propagator in Fourier-Laplace space

In this limit we may take qb � 1 and, therefore, have
I1(qb) → 0. The ratio �1/� is, therefore, approximated by

�1

�
∼ K1(qa)

K0(qa)
, (94)

and we find the following limiting form for the surface
propagator,

n(k, s) ∼ N0

s + k2 Ds + κq
K1(qa)

K0(qa)

. (95)
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2. Number of particles on the surface

Using again the relation Ns(s) = n(k = 0, s) and with
q = √

s/Db at k = 0, we obtain

Ns(s) = N0

s + s√
stκ

K1(
√

sta)

K0(
√

sta)

. (96)

We proceed to approximate the Bessel functions in this ex-
pression. For small argument x ,

K0(x) ≈ −
(

ln
x

2
+ γ

)
,

K1(x) ≈ 1

x
, (97)

where γ ≈ 0.5772 is Euler’s constant. With sta, stb 	 1 we
thus arrive at the form

Ns(s) ∼ N0

2

√
tatκ ln

(
4

C2sta

)
, (98)

where ln C ≡ γ . After Laplace inversion (see Appendix D)
we obtain the final 1/t result for the number of surface
particles,

Ns(t) ∼ N0

2

√
tatκ

1

t
. (99)

3. Surface mean squared displacement

The surface mean squared displacement can be obtained
from expansion of the surface propagator (95) at small k.
Some care has to be taken to consistently expand the Bessel
functions. We proceed as follows. Since qa 	 1 we make use
of the expansions (97) and find

n(k, s) ∼ N0

s + k2 Ds + 2κ

a

1

ln
(

4
C2(k2a2+sta )

)

∼ N0

s + k2 Ds + 2κ

a

1

ln
(

4
C2sta

)
− k2a2

sta

.

We then expand in the denominator according to

n(k, s) ∼ N0

s + k2 Ds + 2κ

a

1(
4

C2sta

)
⎡
⎣1 + k2a2

sta ln
(

4
C2sta

)
⎤
⎦

.

(100)
Expansion in orders of k finally leads us to

n(k, s) ∼ N0

{√
tatκ
2

ln

(
4

C2sta

)
− k2 Db

√
tatκ
2s

−k2 Ds
tatκ
4

ln2

(
4

C2sta

)
+ O

(
k4
)}

. (101)

From this expression we can now obtain the surface mean
squared displacement in the form

〈z2(s)〉 = − ∂2n(k, s)

∂k2

∣∣∣∣
k=0

∼ Db

√
tatκ
s

+ Ds
tatκ
2

ln2

(
C2ta

4
s

)
. (102)

Using the asymptotic Laplace transform pair (compare
Appendix D)

ln2(As) ÷ 2

t
ln

(
Ct

A

)
, (103)

we obtain the surface mean squared displacement

〈z2(t)〉 ∼ Ds
tatκ

t
ln

(
4t

Cta

)
+ Db

√
tatκ . (104)

Normalized by the associated time evolution of the number
of surface particles the normalized surface mean squared dis-
placement becomes

〈z2(t)〉norm ∼ 2Ds
√

tatκ ln

(
4t

Cta

)
+ 2Dbt. (105)

Again, this result is quite remarkable: the surface mean
squared displacement reaches a plateau value in this regime.
In the absence of the outer cylinder this is the terminal behav-
ior, reflecting the balance of ever increasing surface displace-
ment due to long bulk excursions and the continuing escape
of surface particles to the bulk. Normalized to the time evo-
lution of these surface particles we find a linear growth of the
surface mean squared displacement.

4. Surface propagator in real space

In contrast to the previous two regimes, here the value of
qa acquires values smaller and larger than 1. In the tails of the
propagator (z � 1) we expand

K0(qa) ∼ − ln(qa) and K1(qa) ∼ 1/(qa). (106)

Therefore, we can express the propagator as

n(k, s) ∼ N0

s + κ

a ln(1/[qa])

. (107)

We further approximate this expression to obtain the logarith-
mic form

n(k, s) ∼ N0
a

κ
ln

1

qa
= −N0

a

2κ
ln
(
a2k2 + sta

)
. (108)

That this seemingly harsh approximation makes sense can
be seen by evaluating the surface particle number Ns(t)
= N0n(k = 0, s) ∼ 1

2 N0
√

tatκ ln(1/[sta]) leading to Ns(t)
∼ N0

√
tatκ/(2t), matching our previous result [Eq. (99)].

Formally we can now write

n(k, t) = − N0a

2κ

∫
Br

est ln(sta + k2a2)
ds

2π i
, (109)
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where the integral index Br indicates the Bromwich curve for
the Laplace inversion. Following Appendix D, we obtain

n(k, t) = N0a

2κt
exp(−k2 Dbt). (110)

Inverse Fourier transformation delivers the Gaussian result

n(z, t) ∼ N0a

2κt

1√
4π Dbt

exp

(
− z2

4Dbt

)
, (111)

with varying normalization.

D. Long times tκ � ta � tb � t

In this final regime the outer cylinder becomes dom-
inant, and the inequalities tκ 	 ta 	 tb 	 t correspond to
stκ , sta, stb 	 1 in terms of the associated Laplace variable.

1. Surface propagator in Fourier-Laplace space

In this long time regime we start with the original expres-
sion (48) of the surface propagator in Fourier-Laplace space
and take the appropriate limits for the number of surface par-
ticles and the surface mean squared displacement separately.

2. Number of particles on the surface

From Eq. (48) we directly obtain in the k = 0 limit

Ns(s) = N0

s + κ

√
s

Db

�1(0, s)

�(0, s)

. (112)

To calculate the approximations for �1(0, s) and �(0, s)
we employ the following small argument expansions of the
Bessel functions:

I0(x) ≈ 1,

K0(x) ≈ −γ − ln
x

2
,

I1(x) ≈ x

2
,

K1(x) ≈ 1

x
. (113)

Then we find

�1(0, s) ≈ 1

2

√
tb
ta

,

�(0, s) ≈ 1√
stb

. (114)

Plugging these expansions into expression (112) we get

Ns(s) ∼ N0

s + s
tb

2
√

tatκ

∼ 2N0
√

tatκ
tbs

, (115)

and therefore

Ns(t) ∼ 2N0
√

tatκ
tb

. (116)

At long times the system reaches a stationary state due to the
confinement by the outer cylinder.

3. Surface mean squared displacement

Again we start with the full surface propagator in Fourier-
Laplace space [Eq. (48)] and this time expand it around k = 0.
Since sta, stb 	 1 we have qa, qb 	 1. To calculate �1(k, s)
and �(k, s) at k → 0 we use the approximations (113). Then,

�1(k, s) ≈ 1

2

√
tb
ta

,

�(k, s) ≈ 1

qb
. (117)

Inserting into the propagator (48) delivers the approximation

n(k, s) ∼ 1

s + k2 Ds + κb2

2a
q2

∼ 1
stb

2
√

tatκ
+ k2

(
Ds + Db

tb
2
√

tatκ

) . (118)

We expand this expression in powers of k, obtaining

n(k, s) ∼ 2
√

tatκ
stb

− k2 4tatκ
s2t2

b

(
Ds + tb

2
√

tatκ
Db

)
+ O(k4).

(119)
For the surface mean squared displacement we, therefore,
have that

〈z2(s)〉 = − ∂2n(k, s)

∂k2

∣∣∣∣
k=0

∼ 8tatκ
s2t2

b

Ds + 4Db

√
tatκ

s2tb
, (120)

and finally

〈z2(t)〉 ∼ 8tatκ
t2
b

Dst + 4Db

√
tatκ
tb

t. (121)

At long times the stationary process causes a normal effec-
tive surface diffusion. The normalized surface mean squared
displacement attains the form

〈z2(t)〉norm ∼ 4
√

tatκ
tb

Dst + 2Dbt. (122)

Without surface diffusion we, therefore, observe normal lin-
ear diffusion with the bulk diffusivity Db. In the presence of
surface diffusion we have a correction proportional to Ds .
Given that tb � √

tatκ , the amplitude of this surface contri-
bution is small.

4. Surface propagator in real space

In this long time regime we consider the tails of the prop-
agator such that z � b and qa, qb 	 1. The Bessel functions
are thus approximated by Eqs. (113); therefore,

n(k, s) ∼ N0

s + κb2q2/(2a)
= N0

s + κb2(k2 + s/Db)/(2a)
.

(123)
Since

κb2

2aDb
= tb

2
√

tatκ
� 1 (124)
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we may simplify Eq. (123) to

n(k, s) ∼ 2N0
√

tatκ
tb

1

s + Dbk2
. (125)

The propagator consequently assumes the Gaussian shape

n(z, t) ∼ 2N0
√

tatκ
tb

1√
4π Dbt

exp

(
− z2

4Dbt

)
. (126)

The prefactor 2
√

tatκ/tb 	 1 reflects the probability that a
considerable portion of the particles is desorbed from the
cylinder surface.

V. EXPLICIT CALCULATIONS: INTERMEDIATE
COUPLING LIMIT

We now turn to the case of intermediate coupling defined
by ta 	 tκ 	 tb.

A. Short times t � ta � tκ � tb

In this limit corresponding to sta, stκ , stb 	 1 we obtain
the same results as in the matching limit of the strong coupling
regime, compare Sec. IV A.

B. Intermediate times ta � t � tκ � tb

This limit in Laplace space corresponds to the inequali-
ties sta 	 1 and stκ , stb � 1.

1. Number of particles on the surface

In Laplace space we start from the exact expression for
Ns(s) = n(k = 0, s),

Ns(s) = N0

s + κ

√
s

Db

�1(0, s)

�(0, s)

, (127)

where �1(k, s) and �(k, s) are defined in Eqs. (47) and (41).
With the asymptotic expansions of the modified Bessel func-
tions for small argument summarized in Eq. (113), as well
as with the large argument asymptotics (60) we obtain from
Eq. (127) the result

Ns(s) = N0tc

stc + 2

ln(4/[C2sta])

, (128)

where we introduced the new time scale tc ≡ √
tκ ta ,which

fulfills the inequality ta < tc < tκ .
Let us first regard the subregime ta 	 t 	 tc 	 tκ . If

these inequalities are fulfilled, we may neglect the logarith-
mic term in the denominator, and find

Ns(s) ∼ N0

s
, (129)

i.e., the number of particles on the surface still remains con-
stant to leading order:

Ns(t) ∼ N0. (130)

The range ta 	 tc 	 t 	 tκ is difficult to estimate, as now
the term linear in s and the logarithmic term in the de-
nominator are of comparable order. As can be seen in
Fig. 2, in the interval from tc to tκ the number Ns(t) of sur-
face particles describes a quite complicated turnover from the
persisting initial condition N0 to the 1/t behavior in the fol-
lowing regime tκ 	 t 	 tb. The prominent shoulder visible
in the double-logarithmic plot propagates to the behavior of
the normalized mean squared displacement discussed below.

2. Surface mean squared displacement

We start from expression (48) for the Fourier-Laplace
transform of the surface propagator. To determine the associ-
ated mean squared displacement we will need the small wave
number approximation. Since sta 	 1 and stb � 1 we have
qa 	 1 and qb � 1. With the definitions (47) and (41) and
with the asymptotic expansions of the modified Bessel func-
tions we find after a few steps

�(k, s) ∼ exp(qb)

(2π )1/2 (qb)1/2 ln

(
2

Cqa

)
(131)

and

�1(k, s) ∼ 1

qa

exp(qb)

(2π )1/2 (qb)1/2 . (132)

Thus, the following approximation

�1(k, s)

�(k, s)
∼ 1

qa ln

(
2

Cqa

)
,

(133)

yields for the ratio �1/�, and the surface propagator becomes

n(k, s) ∼ N0

s + k2 Ds + κ

a

1

ln (2/[Cqa])

. (134)

At k → 0 we expand the logarithm as follows:

ln

(
2

Cqa

)
= ln

(
2

C
√

k2a2 + sta

)

= 1

2
ln

(
4

C2
(
sta + k2a2

)
)

∼ 1

2
ln

(
4

C2sta

)
− k2a2

2sta
. (135)

Therefore,

1

ln

(
2

Cqa

) ∼ 2

ln

(
4

C2sta

)
⎡
⎢⎢⎣1 + k2a2

sta

1

ln

(
4

C2sta

)
⎤
⎥⎥⎦ .

(136)
Plugging this expansion into expression (134) we obtain
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n(k, s) ∼ N0

s + 2κ

a

1

ln(4/[C2sta])
+ k2

[
Ds + 2κ

a

a2

sta

1

ln2(4/[C2sta])

] . (137)

This can be rephrased in the form

n(k, s) = N0

⎡
⎢⎢⎢⎣ 1

s + 2κ

a

1

ln(4/[C2sta])

− k2

Ds + 2Db

s
√

tκ ta

1

ln2(4/[C2sta])[
s + 2κ

a

1

ln(4/[C2sta])

]2

⎤
⎥⎥⎥⎦ . (138)

Here, we again consider the subregime ta 	 t 	 tc 	 tκ for
which in the limit k → 0

n(k, s) ∼ No

⎡
⎢⎢⎣1

s
− k2 Ds

s2
− k2 2Db

s3tc

1

ln2

(
4

C2sta

)
⎤
⎥⎥⎦ ,

(139)
and thus

〈z2(s)〉 ∼ 2Ds

s2
+ 4Db

tc

1

s3 ln2

(
4

C2sta

) . (140)

After Laplace inversion we ultimately find

〈z2(t)〉 ∼ 2Dst + 2Dbt2

tc ln2

(
4t

C2ta

) . (141)

According to above findings this is also the result for the nor-
malized surface mean squared displacement.

Analogous to what was said above, the following sub-
regime tc 	 t 	 tκ is difficult to estimate analytically, and
we refer to the numerical result shown in Fig. 3. While for the
surface mean squared displacement one can see a slight in-
crease in the slope compared to the linear behavior shown by
the guiding line, for the normalized analog we see a distinct
increase in the slope after tc.

C. Times longer than ta � tκ

At times longer than the characteristic scale tκ our results
again correspond to those of the strong coupling limit (see
Secs. IV C and IV D).

VI. FIRST PASSAGE STATISTICS

In this section we address the problem of the first pas-
sage time statistics in our geometry, that is, the time it takes a
particle starting at some point in between the two cylinders to
reach the inner cylinder. As before we neglect the dependence
on the polar angle θ in our description. The relevant proba-
bility density is, therefore, P(r, z, t). Then 2πr P(r, z, t)drdz
gives us the probability that the particle at time t is in the
range (r . . . r + dr, z . . . z + dz). The initial distribution is

smeared out on a circle of radius r0 in the plane z = 0,

P(r, z, t)|t=0 = 1

2πr0
δ(r − r0)δ(z). (142)

Here, the factor 1/2πr0 appears because of the normalization
of the initial density,∫ b

a
rdr

∫ 2π

0
dθ

∫ ∞

−∞
dz P(r, z, t)|t=0 = 1. (143)

The time evolution of P(r, z, t) is given by the diffusion
equation

∂

∂t
P(r, z, t) = Db∇2 P(r, z, t), (144)

valid for radii a ≤ r ≤ b and on the entire cylinder axis,
−∞ < z < ∞. The Laplace operator in polar-symmetric
cylindrical coordinates is

∇2 = 1

r

∂

∂r

(
r

∂

∂r

)
+ ∂2

∂z2
. (145)

In the calculation of the first passage dynamics we impose an
absorbing boundary condition at r = a such that

P(r, z, t)|r=a = 0, (146)

while at the outer cylinder we keep the reflecting boundary
condition

∂

∂r
P(r, z, t)

∣∣∣∣
r=b

= 0. (147)

The result for the probability density is

P(r, k, s) = 1

2π Db

I1(qb)K0(qr0) + K1(qb)I0(qr0)

I0(qa)K1(qb) + K0(qa)I1(qb)

× (K0(qa)I0(qr ) − I0(qa)K0(qr )), (148)

as calculated in Appendix C.

A. First passage time density for times t � tb

We first investigate the case when the outer cylinder
is remote, that is, t 	 tb. To this end we set b → ∞. In
Eq. (148) this means that I1(qb) → ∞ and K1(qb) → 0 such
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that

P(r, k, s) = K0(qr0)(K0(qa)I0(qr ) − I0(qa)K0(qr ))

2π Db K0(qa)
.

(149)

The probability density function for the first passage time
is given by the radial flux through

℘(t) = 2πa
∫ ∞

−∞
Db

∂ P(r, z, t)

∂r

∣∣∣∣
r=a

dz, (150)

compare also Ref. 13. Its Laplace transform reads

℘(s) = 2πaDb
∂ P(r, k, s)

∂r

∣∣∣∣
r=a,k=0

, (151)

where the integral over the cylinder axis z has been replaced
by the zeroth Fourier mode. Inserting Eq. (149),

℘(s) = qa
K0(qr0)

K0(qa)
{I0(qa)K1(qa) + K0(qa)I1(qa)}q=√

s/Db

= √
sta

K0(
√

st0)

K0(
√

sta)
{I0(

√
sta)K1(

√
sta)

+ K0(
√

sta)I1(
√

sta)}

= K0(
√

st0)

K0(
√

sta)
. (152)

Here, we defined the diffusion time

t0 = r2
0

Db
. (153)

Expression (152) recovers a result in Ref. 5.
To evaluate this result we need the more subtle expansion

of the Bessel functions31

K0(z) ∼ −I0(z)
{
γ + ln

( z

2

)}
+ z2

4

∼ − ln z + C + O(z2). (154)

Here γ ≈ 0.5772 is Euler’s constant such that C = ln 2
− γ > 0. We therefore find for the Laplace image of the first
passage time density

℘(s) ∼ ln(1/[st0]) + 2C

ln(1/[sta]) + 2C

∼ ln(1/[st0])

ln(1/[sta])

[
1 + 2C

ln(1/[st0])

] [
1 − 2C

ln(1/[sta])

]

∼
ln
(

1
sta

ta
t0

)
ln
(

1
sta

)

∼ 1 − ln(t0/ta)

ln(1/[sta])
. (155)

Substituting for t0 we obtain

℘(s) ∼ 1 − 2
ln(r0/a)

ln(1/[sta])
. (156)

The Laplace inversion based on Tauberian theorems for
slowly varying functions32 finally delivers the desired

result

℘(t) � 2
ln(r0/a)

t ln2(t/ta)
. (157)

This expansion is valid in the range t � ta . We, therefore,
obtain a very subtle probability density, in which the log-
arithm ensures normalizability, however, not even fractional
moments 〈tq〉 with q > 0 exist. This extremely shallow first
passage time density is characteristic for the cylindrical prob-
lem. We note that in the limit r0 = a we recover ℘(t) = δ(t),
as it should be.

B. First passage time density for times t � tb

At times t � tb the outer cylinder comes into play. To
assess the behavior of the first passage in this regime we insert
the full solution (148) into Eq. (151) for the flux, finding

℘(s) = I1(
√

stb)K0(
√

st0) + K1(
√

stb)I0(
√

st0)

I1(
√

stb)K0(
√

sta) + K1(
√

stb)I0(
√

sta)
. (158)

At sta < st0 < stb 	 1 we use the following expansions for
the Bessel functions

I1(
√

stb) ∼ 1

2

√
stb,

K1(
√

stb) ∼ 1√
stb

,

I0(
√

sta/0) ∼ 1,

K0(
√

sta/0) ∼ − ln
√

sta/0. (159)

This leads us to

℘(s) ∼ 1 − stb ln(st0)/4

1 − stb ln(sta)/4

∼ 1 − stb
4

ln

(
t0
ta

)
∼ 1 − 〈t〉s. (160)

At long times t � tb we find a finite mean first passage time

〈t〉 = b2

2Db
ln
(r0

a

)
, (161)

as it should be in this stationary regime. The complete be-
haviour of the first passage time density is displayed in Fig. 4.

C. First passage time density at very short
times t � ta

We conclude our discussion of the first passage time den-
sity with the case of very short times, t 	 ta . In this regime
a particle starting close to the inner cylinder surface does not
yet feel the cylindrical geometry and we would naively expect
that the first passage is given by the one-dimensional Lévy-
Smirnov form.

As we may neglect the outer cylinder, we start from result
Eq. (149). We expand this result in inverse powers of

√
s and

then perform a term-wise inverse Laplace transform. With

Kν(z) =
√

π

2z
e−z

{
1 + 4ν2 − 1

8z
+ O

(
1

z2

)}
, (162)
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FIG. 4. First passage time density ℘(t) based on Laplace inversion of Eq. (152). (Left) The outer cylinder is present, eventually causing an exponential-like
steep decay of ℘(t), compared to the unbounded behavior. The black line shows the short time approximation [Eq. (165)]. (Right) Unbounded problem showing
the long-time asymptotics. The inverse square-logarithmic term matters, as can be seen from comparison with the shown asymptotic behaviors.

we find that

K0
(√

st0
)

K0(
√

sta)
∼
(

ta
t0

)1/4

exp(−√
s[

√
t0 − √

ta])

×
{

1 + 1

8

(
1√
sta

− 1√
st0

)}

∼
(

a

r0

)1/2

exp

(
−√

s
r0 − a√

Db

)

×
{

1 +
√

Db

8
√

s

r0 − a

ar0

}
. (163)

We are thus led to the inverse Laplace transform

℘(t) ∼
(

a

r0

)1/2 r0 − a√
Db

1

2
√

π t3
exp

(
− (r0 − a)2

4Dbt

)

+
(

a

r0

)1/2 r0 − a

ar0

√
Db

8
√

π t
exp

(
− (r0 − a)2

4Dbt

)
. (164)

Reorganizing this expression we find

℘(t) ∼
(

a

r0

)1/2 r0 − a√
4π Dbt3

exp

(
− (r0 − a)2

4Dbt

)

×
{

1 + Dbt

4ar0
+ · · ·

}
. (165)

At very short times the first passage time density indeed coin-
cides with the one-dimensional limit, reweighted by the ratio√

a/r0. Note that if we keep the distance � = r0 − a fixed
but let both r0 and a tend to infinity, we recover the result for
a flat surface,

℘flat(t) = �√
4π Dbt3

exp

(
− �2

4Dbt

)
, (166)

i.e., the well-known Lévy-Smirnov distribution.

VII. DISCUSSION

We established an exact approach to BMSD along a
reactive cylindrical surface revealing four distinct diffusion
regimes. In particular our formalism provides a stringent
derivation of the transient superdiffusion discussed earlier and
explicitly quantifies the transition to other regimes. Notably
we revealed a saturation regime for the MSD along the cylin-
der that becomes relevant at times above which the diffusing
particle feels the curvature of the cylinder surface (ta). This
behavior, caused by the cylindrical geometry, stems from an
interesting balance between a net flux of particles into the bulk
and the fact that particles with a longer return time also lead
to an increased effective surface relocation. In the absence of
an outer cylinder the saturation is terminal, while in its pres-
ence the MSD along the cylinder returns to a linear growth
in time. This observation will be important in future models
of BMSD around cylinders and particularly for the interpre-
tation of experimental data obtained for BMSD systems. We
note that in the proper limit a → ∞ the previous results for
a planar surface are recovered. Relaxing the strong coupling
condition we demonstrated the existence of an almost ballis-
tic BMSD behavior, a case that might be relevant for transport
along thin cylinders such as DNA.

In Ref. 5 it was shown that the scaling behavior in the
regimes below and above ta can be probed experimentally
by NMR methods measuring the BMSD of water molecules
along imogolite nanorods over three orders of magnitude
in frequency space. For larger molecules such as a pro-
tein of approximate diameter 5 nm we observe a diffusivity
of 10−6cm2/s such that, for instance, the saturation plateau
around a bacillus cell (radius 1/2 μm) sets in at around
ta = 2.5 ms which might give rise to interesting consequences
for the material exchange around such cells. In general, the
relevance of the individual regimes will crucially depend on
the scales of the surface radius and the diffusing particle
(and therefore its diffusivity). It was discussed previously
that even the superdiffusive short-term behavior may become
relevant.1, 2, 4 In general, in a given system the separation
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between the various scaling regimes may not be sharp. More-
over, typically a single experimental technique will not be
able to probe all regimes. It is therefore vital to have avail-
able a solution for the entire BMSD problem.
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APPENDIX A: DERIVATION OF THE REACTIVE
BOUNDARY CONDITION FOR A PLANAR SURFACE

We start with a derivation of the coupling between sur-
face and bulk in a discrete random walk process along the ρ

coordinate perpendicular to the surface (as specified in Fig. 5).
Let Ni with i = 1, 2, . . . denote the number of particles at site
i of this one-dimensional lattice with spacing a. The number
of particles on the surface at lattice site i = 0 are termed N0.
The exchange of particles is possible only via nearest neigh-
bor jumps, each characterized by the waiting time τ . For the
exchange between the surface and site i = 1, we then have
the following law

dN0(t)

dt
= 1

2τ
N1 − 1

τdes
N0, (A1)

where τdes is the characteristic time for desorption from the
surface. The bulk sites are governed by equations of the form

d N1(t)

dt
= 1

τdes
N0 − 1

τ
N1 + 1

2τ
N2,

d N2(t)

dt
= 1

2τ
N1 + 1

2τ
N3 − 1

τ
N2, (A2)

etc. Let us define the number of “bulk” particles at the surface
site i = 0 through

N0 ≡ 2τ

τdes
N0. (A3)

This trick will allow us to formulate the exchange equation
also for site i = 1 in a homogeneous form. Namely, from
Eq. (A1) we have

dN0(t)

dt
= 1

2τ
(N1 − N0) . (A4)

Moreover, from Eq. (A2) we find

d N1(t)

dt
= 1

2τ
(N0 − 2N1 + N2) , (A5)

and

d N2(t)

dt
= 1

2τ
(N1 − 2N2 + N3) , (A6)

etc.
Let us now take the continuum limit. For that purpose

we make a transition from N0 → ns as the number of surface
particles, and Ni → anb for the bulk concentration of parti-
cles. Expansion of the right hand side of Eq. (A4) yields the

i=
i=
i=

0
1
2

a

ρ

FIG. 5. Schematic of the random walk picture of the surface-bulk exchange.
In our derivation we pass from the discrete lattice with spacing a to the con-
tinuous variable ρ. The surface corresponds to ρ = 0.

surface-bulk coupling

∂ns(t)

∂t
= a

2τ
a

∂nb(ρ, t)

∂ρ

∣∣∣∣
ρ=0

. (A7)

Similarly from Eq. (A5) we obtain the bulk diffusion equation

∂nb(ρ, t)

∂t
= 1

2τ
a2 ∂2nb

∂ρ2
. (A8)

Finally, the boundary condition

a

2τ
nb(ρ, t)

∣∣∣
ρ=0

= 1

τdes
ns, (A9)

stems from our definition (A3).

APPENDIX B: CALCULATION OF THE SURFACE
MEAN SQUARED DISPLACEMENT

To calculate the quantity (54) we start by rewriting ex-
pression (48) in the form

n(k, s) = N0

s + k2 Ds + A(q, s)
, (B1)

where

q ≡
√

k2 + s/Db (B2)

and

A(q, s) = κq
�1(q, s)

�(q, s)
. (B3)

Differentiation of n(k, s) yields

∂

∂k
n(k, s) = − N0

(s + k2 Ds + A(q, s))2

(
2k Ds + ∂ A(q, s)

∂q

∂q

∂k

)
,

(B4)
and thus double differentiation of n(k, s) produces

∂2

∂k2
n(k, s) = − N0

(s + k2 Ds + A(q, s))2

(
2Ds + ∂2 A(q, s)

∂k2

)

+ 2N0

(s + k2 Ds + A(q, s))3

(
2k Ds + ∂ A

∂k

)2

. (B5)
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Since

∂q

∂k

∣∣∣∣
k=0

= 0, (B6)

and therefore

∂ A(q, s)

∂k

∣∣∣∣
k=0

= 0 and
∂n(k, s)

∂k

∣∣∣∣
k=0

= 0, (B7)

such that the first moment 〈z(t)〉 of n(z, t) vanishes, as it
should due to symmetry reasons. Moreover, we then obtain

〈z2(s)〉 = 1

[s + A(0, s)]2

[
2Ds + ∂2 A

∂k2

∣∣∣∣
k=0

]

= N 2
s (s)

N 2
0

[
2Ds + ∂2 A

∂k2

∣∣∣∣
k=0

]
. (B8)

The second term in the square brackets can be transformed to

∂2 A(q, s)

∂k2
= ∂

∂k

(
∂ A(q, s)

∂q

)
∂q

∂k
+ ∂ A(q, s)

∂q

∂2q

∂k2
, (B9)

such that

∂2 A(q, s)

∂k2

∣∣∣∣
k=0

=
√

Db

s

∂ A(q, s)

∂q

∣∣∣∣
k=0

. (B10)

Differentiation of A(q, s) results in the expression

∂ A(q, s)

∂q
= κ

�1

�

[
1 + q

�1

∂�1

∂q
− q

�

∂�

∂q

]
. (B11)

At k = 0 we have q = √
s/Db, and we ultimately obtain

〈z2(s)〉 = N 2
s (s)

N 2
0

{
2Ds + κ

√
Db

s

�1(0, s)

�(0, s)

[
1 +

√
s

Db

×
(

1

�1(0, s)

∂�1

∂q

∣∣∣∣
k=0

− 1

�(0, s)

∂�

∂q

∣∣∣∣
k=0

)]}
.

(B12)

Here, we include the auxiliary quantities

∂�1

∂q

∣∣∣∣
k=0

= a[K ′
1(

√
sta)I1(

√
stb) − I ′

1(
√

sta)K1(
√

stb)]

+ b[K1(
√

sta)I ′
1(

√
stb) − I1(

√
sta)K ′

1(
√

stb)],

(B13)

and

∂�

∂q

∣∣∣∣
k=0

= a[I1(
√

sta)K1(
√

stb) − K1(
√

sta)I1(
√

stb)]

+ b[I0(
√

sta)K ′
1(

√
stb) + K0(

√
sta)I ′

1(
√

stb)],

(B14)

In these expressions the prime implies a derivative over the
whole argument, and we have31

I ′
1(z) = I0(z) − 1

z
I1(z), and K ′

1(z) = −K0(z) − 1

z
K1(z).

(B15)
Taking the various limits corresponding to the cases dis-

cussed in Secs. IV and V from above exact results we can in-
deed confirm the results obtained there based on the limiting

forms for the surface propagator. Here, we demonstrate the
corresponding derivations for the surface mean squared dis-
placement based on the exact Eq. (B12) in the strong binding
regime.

(i) At short times t 	 tκ 	 ta 	 tb we use the
expansions31

Iν(z) ∼ ez

√
2π z

, and Kν(z) ∼
√

π

2z
e−z . (B16)

Moreover, with Eq. (B15) we find that

I ′
1(
√

sta/b) ∼ I0(
√

sta/b) ∼ exp(
√

sta/b)

(2π )1/2(sta/b)1/4
(B17)

and

K ′
1(
√

sta/b) ∼ −K0(
√

sta/b) ∼ −π1/2 exp(−√
sta/b)

21/2(sta/b)1/4

(B18)
so that in this approximation

�1(0, s) ∼ �(0, s) ∼ exp
(
s1/2
[
t1/2
b − t1/2

a
])

2(sta)1/4(stb)1/4
, (B19)

thus

∂�1

∂q

∣∣∣∣
k=0

∼ ∂�

∂q

∣∣∣∣
k=0

∼ (b − a)
exp
(
s1/2
[
t1/2
b − t1/2

a
])

2(sta)1/4(stb)1/4
,

(B20)
and finally(

1

�1

∂�1

∂q
− 1

�

∂�

∂q

)
k=0

∼ 0. (B21)

From expressions (B12) and (64) we, therefore, obtain

〈z2(s)〉 = 2Ds

s2
+ Db

s5/2t1/2
κ

. (B22)

With the Laplace transform pair

1

sk
÷ t k−1

�(k)
, k > 0, (B23)

and �(5/2) = 3π1/2/4 we arrive at the result

〈z2(t)〉 ∼ 2Dst

[
1 + 2Db

3π1/2 Ds

(
t

tκ

)1/2
]

, (B24)

where the equivalence with the normalized mean
squared displacement is due to the fact that Ns(t) ∼ N0

in this short time regime. This result coincides with our
finding [Eq. (68)] obtained from the approximated sur-
face propagator.

(ii) At intermediate times tκ 	 t 	 ta 	 tb approximation
(B21) still holds. From Eq. (B12) and with the time evo-
lution [Eq. (85)] of the number of particle on the surface
in this regime, we obtain

〈z2(s)〉 ∼ Ns(s)2

N 2
0

[
2Ds + κ

(
Db

s

)1/2
]

∼ 2Ds
tκ
s

+ Db
t1/2
κ

s3/2
, (B25)
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and, after inverse Laplace transformation,

〈z2(t)〉 ∼ 2Dstκ + 2Db

π1/2
t1/2
κ t1/2. (B26)

Again, we find coincidence with the previous result
[Eq. (88)].

(iii) At even longer times tκ 	 ta 	 t 	 tb we make use
of approximations (113) and (B16) to (B18). For the
derivatives of the Bessel functions we have in this
regime

I ′
1(

√
sta) = I0(

√
sta) − 1√

sta
I1(

√
sta) ∼ 1

2
,

K ′
1(

√
sta) = −K0(

√
sta) − 1√

sta
K1(

√
sta) ∼ − 1

sta
,

I ′
1(

√
stb) ∼ I0(

√
stb) ∼ exp([stb]1/2)

(2π )1/2(stb)1/4
,

K ′
1(

√
stb) ∼ −K0(

√
stb) ∼ −π1/2 exp(−[stb]1/2)

21/2(stb)1/4
.

(B27)

Therefore,

�1(0, s) ∼ exp([stb]1/2)

(2π )1/2(sta)1/2(stb)1/4
(B28)

and

∂�1

∂q

∣∣∣∣
k=0

=
(

b

(sta)1/2
− a

sta

)
b exp((stb)1/2)

(2π )1/2(stb)1/4
,

(B29)
as well as

�(0, s) ∼ 1

2

exp([stb]1/2)

(2π )1/2(stb)1/4
ln

(
4

C2sta

)
(B30)

and

∂�

∂q

∣∣∣∣
k=0

=
[
− a

(sta)1/2
+ b

2
ln

(
4

C2sta

)]
exp((stb)1/2)

(2π )1/2(stb)1/4
.

(B31)
Here, we define C = exp(γ ) ≈ 1.78107, where γ

≈ 0.577216 is Euler’s γ constant. Collecting our results
we find that

1

�1(0, s)

∂�1

∂q

∣∣∣∣
k=0

− 1

�(0, s)

∂�

∂q

∣∣∣∣
k=0

∼ a

(sta)1/2

⎛
⎜⎜⎝−1 + 2

ln

(
4

C2sta

)
⎞
⎟⎟⎠ , (B32)

and ultimately recover

〈z2(s)〉 ∼ Ns(s)2

N 2
0

⎡
⎢⎢⎣2Ds + 4Db

(tatκ )1/2

1

s ln2

(
4

C2sta

)
⎤
⎥⎥⎦ .

(B33)

Inserting expression (98) we obtain

〈z2(s)〉 ∼ Dstatκ
2

ln2

(
4

C2sta

)
+ Db(tatκ )1/2

s
.

(B34)
By Tauberian theorems the final result for the surface
mean squared displacements in this long time regime
are

〈z2(t)〉 ∼ Dstatκ
t

ln

(
4t

Cta

)
+ Db(tatκ )1/2. (B35)

This result corroborates Eq. (104).
(iv) Finally, at very long times tκ 	 ta 	 tb 	 t we have

the asymptotic behaviors

I0(
√

sta/b) ∼ 1,

K0(
√

sta/b) ∼ −γ − ln

(
(sta/b)1/2

2

)
,

I1(
√

sta/b) ∼ 1

2
(sta/b)1/2,

K1(
√

sta/b) ∼ (sta/b)−1/2,

I ′
1(
√

sta/b) = I0(
√

sta/b) − I1(
√

sta/b)

(sta/b)1/2
∼ 1

2
,

K ′
1(
√

sta/b) = −K0(
√

sta/b) − K1(
√

sta/b)

(sta/b)1/2
∼ − 1

sta/b
.

(B36)

Therefore,

∂�1

∂q

∣∣∣∣
k=0

∼ b

4
(sta)1/2 ln

(
4

C2sta

)
(B37)

and

�1(0, s) ∼ 1

2

√
tb
ta

(B38)

as well as

∂�

∂q

∣∣∣∣
k=0

∼ − b

stb
+ b

4
ln

(
4

C2sta

)
(B39)

and

�(0, s) ∼ 1

(stb)1/2
. (B40)

For the square bracket in expression (B12) we obtain

[1 + · · ·] ∼ 2, (B41)

and thus

〈z2(s)〉 ∼ N 2
s (s)

N 2
0

[
2Ds + Db

tb
(tatκ )1/2

]
. (B42)

With the help of Eq. (115) this implies the result for the
surface mean squared displacement

〈z2(t)〉 ∼ 8tatκ
t2
b

Dst + 4(tatκ )1/2

tb
Dbt. (B43)

Thus, we corroborate the finding (121) from the approx-
imate calculation. With similar calculations one can re-
produce the time evolution of the number of particles
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on the inner cylinder surface and thus the normalized
surface mean squared displacement. Analogous reason-
ing confirms the results obtained for the intermediate
coupling limit in Sec. V.

APPENDIX C: CALCULATION OF THE FIRST
PASSAGE TIME DENSITY

In the Fourier-Laplace domain the diffusion equation
(144) becomes an ordinary differential equation,

d2

dr2
P(r, k, s) + 1

r

d

dr
P(r, k, s) − q2 P(r, k, s) = −δ(r − r0)

2πr0 Db
,

(C1)

where

q2 = k2 + s

Db
. (C2)

The boundary conditions are

P(r, k, s)|r=a = 0 (C3)

and

∂

∂r
P(r, k, s)

∣∣∣∣
r=b

= 0. (C4)

We rewrite the Fourier-Laplace transformed diffusion
Eq. (C1) in the form

LP(r, k, s) = φ(r ), (C5)

where the operator L and the inhomogeneity φ(r ) represent

L = d2

dr2
+ 1

r

d

dr
− q2 (C6)

and

φ(r ) = δ(r − r0)

2πr0 Db
. (C7)

Equation (C5) can be solved by the method of variation of
coefficients. Namely, knowing that the solution of the homo-
geneous equation reads

P(r, k, s) = AI0(qr ) + BK0(qr ), (C8)

to solve the full equation we assume that A and B are some
functions of the radius r . We impose the condition

A′(r )I0(qr ) + B ′(r )K0(qr ) = 0, (C9)

where the prime denotes a derivative with respect to r .
Consequently, we find

P ′(r, k, s) = A(r )I ′
0(qr ) + B(r )K ′

0(qr ), (C10)

and

P ′′(r, k, s) = A(r )I ′′
0 (qr ) + B(r )K ′′

0 (qr )

+ A′(r )I ′
0(qr ) + B ′(r )K ′

0(qr ). (C11)

According to the method of variation of coefficients this
leads to

LP(r, k, s) = A′(r )I ′
0(qr ) + B ′(r )K ′

0(qr ). (C12)

With above relations we arrive at a system of two equations
with two unknowns, A′ and B ′,

A′(r )I0(qr ) + B ′(r )K0(qr ) = 0,

A′(r )I ′
0(qr ) + B ′(r )K ′

0(qr ) = φ(r ). (C13)

The corresponding Wronskian is31

W (r ) = I0(qr )K ′
0(qr ) − K0(qr )I ′

0(qr )

= −q(I0(qr )K1(qr ) + I1(qr )K0(qr ))

= −1

r
. (C14)

The solutions to Eqs. (C13) are

A′(r ) = − 1

W (r )
K0(qr )φ(r ) (C15)

and

B ′(r ) = 1

W (r )
I0(qr )φ(r ), (C16)

and thus

A(r ) = −
∫

1

W (r )
K0(qr )φ(r )dr,

B(r ) =
∫

1

W (r )
I0(qr )φ(r )dr. (C17)

The general solution of Eq. (C5) has the form

P(r, k, s) =
(

−
∫

1

W (r )
K0(qr )φ(r )dr + A0

)
I0(qr )

+
(∫

1

W (r )
I0(qr )φ(r )dr + B0

)
K0(qr ),

(C18)

where the constants A0 and B0 are determined by the bound-
ary conditions that are rewritten as

P(a, k, s) = lim
r→a+

{(
−
∫ r

a

1

W (r ′)
K0(qr ′)φ(r ′)dr ′ + A0

)

× I0(qr ) +
(∫ r

a

1

W (r ′)
I0(qr ′)φ(r ′)dr ′ + B0

)

× K0(qr )

}
= 0 (C19)
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and

∂

∂r
P(r, k, s)

∣∣∣∣
r=b

=
(

−
∫ b

a

1

W (r ′)
K0(qr ′)φ(r ′)dr ′ + A0

)

× q I ′
0(qb) +

(∫ b

a

1

W (r ′)
I0(qr ′)φ(r ′)dr ′

+ B0

)
q K ′

0(qb) = 0. (C20)

Since the inhomogeneity φ(r ) is a δ distribution, in general
we have to consider two cases separately: r < r0 and r > r0.
However, as we are interested solely in the first passage prob-
lem, for which we require the probability flow at r = a < r0,
we restrict ourselves to the former case, only. This means that
Eq. (C19) simplifies to

A0 I0(qa) + B0 K0(qa) = 0. (C21)

Performing the integrals in expression (C20) and using
Eq. (C13) we obtain the following system to determine the
constants A0 and B0:

A0 I0(qa) + B0 K0(qa) = 0

A0q I1(qb) − B0q K1(qb) = q

2π Db
(I1(qb)K0(qr0)

+ K1(qb)I0(qr0)), (C22)

with the following determinant

det = −q(I0(qa)K1(qb) + K0(qa)I1(qb)). (C23)

The solution of Eq. (C22) is then

A0 = K0(qa)

2π Db

I1(qb)K0(qr0) + K1(qb)I0(qr0)

I0(qa)K1(qb) + K0(qa)I1(qb)
(C24)

and

B0 = − I0(qa)

2π Db

I1(qb)K0(qr0) + K1(qb)I0(qr0)

I0(qa)K1(qb) + K0(qa)I1(qb)
. (C25)

These two relations introduced into Eq. (C18) we obtain

P(r, k, s) = 1

2π Db

I1(qb)K0(qr0) + K1(qb)I0(qr0)

I0(qa)K1(qb) + K0(qa)I1(qb)

× (K0(qa)I0(qr ) − I0(qa)K0(qr )), r ≤ r0.

(C26)

This result coincides with the findings of Berg and
Blomberg,13 when one takes the limit of a completely absorb-
ing boundary condition [in Berg and Blomberg’s notation, this
corresponds to k → ∞ of their reaction rate k].

APPENDIX D: SOME LAPLACE TRANSFORMS

Here, we provide a summary of non-trivial Laplace trans-
forms involving logarithmic functions, used throughout the
text.

1. Laplace inversion of the logarithm

To calculate the inverse Laplace transforms in Eqs. (98)
and (99), as well as Eqs. (109) and (110), we use the direct

Laplace transform of ln t . Namely, for some A > 0,

L

{
ln

(
t

A

)}
=
∫ ∞

0
e−st ln

(
t

A

)
dt = −1

s
(γ + ln(As)),

(D1)
where γ = − ∫∞

0 exp(−x) ln xdx ≈ 0.5772 is Euler’s con-
stant. Introducing the Laplace inversion with appropriate
Bromwich path, we obtain∫

Br
est ln(As)

s

ds

2π i
= − ln

(
Ct

A

)
, (D2)

where C = exp(γ ). Differentiation of this result with respect
to t yields ∫

Br
est ln(As)

ds

2π i
= −1

t
, (D3)

which is an exact result.
Equation (D3) delivers the desired result for Eq. (99):

L −1

{
ln

(
4

C2sta

)}
= 1

t
, (D4)

and for Eq. (110):

L −1{ln(sta + k2a2)} = −1

t
e−k2a2t/ta . (D5)

For the latter relation we used the shift theorem of the Laplace
transform: ∫

Br
est ln(s + �)

ds

2π i
= −1

t
e�t . (D6)

2. Laplace inversion of the squared logarithm

To obtain the Laplace pair (103) we calculate∫
Br

est [ln(As)]2 ds

2π i
, A > 0. (D7)

We first deform the Bromwich path into the Hankel path
Ha(ε), that is, a loop starting from −∞ below the negative
real axis, merging into a small circle around the origin with
radius |s| = ε, with ε → 0 in a positive sense and finally re-
ceding to −∞ moving above the negative real axis. The inte-
gral along the Hankel path can be evaluated directly:

I =
∫

Br
est [ln(As)]2 ds

2π i
=
∫

Ha(ε)
est [ln(As)]2 ds

2π i

=
∫ 0

−∞
exp(|s|te−iπ )[ln(A|s|e−iπ )]2 d|s| exp(−iπ )

2π i

+
∫ ∞

0
exp(|s|teiπ )[ln(A|s|eiπ )]2 d|s| exp(iπ )

2π i
+ Iε .

(D8)

Here Iε → 0 at ε → 0 is the integral over the small circle of
radius ε around the origin. Collecting the terms we find

I =
∫ ∞

0
e−st [ln(As) − iπ ]2 ds

2π i
+ c.c

= −2
∫ ∞

0
e−st ln(As)ds, (D9)
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so that we finally obtain∫
Br

est [ln(As)]2 ds

2π i
= 2

t
ln

(
Ct

A

)
. (D10)

Thus, we find Eq. (103),

L −1

{
ln2

(
C2ta

4
s

)}
= 2

t
ln

(
4t

Cta

)
. (D11)

3. Laplace inversion of the inverse square logarithm
with additional power

We now address the Laplace pair of Eqs. (140) and (141),
namely,

L −1

{
s−3 ln−2

(
4

C2sta

)}
= t2

2
ln−2

(
4t

C2ta

)
. (D12)

To see this result let us recall the Tauberian theorems (see, for
instance, Ref. 33). These state that if the Laplace transform of
some (positive) function ω(t) behaves like

ω(s) ∼ s−ρ L

(
1

s

)
, s → 0, 0 ≤ ρ < ∞, (D13)

then its inverse Laplace transform has the asymptotic form

ω(t) ∼ tρ−1

�(ρ)
L(t), t → ∞. (D14)

Here, L(t) is a function slowly varying at infinity, i.e.,

lim
x→∞

L(ax)

L(x)
= 1 ∀ a > 0. (D15)
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