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Single particle tracking in systems showing anomalous diffusion:

the role of weak ergodicity breaking
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Anomalous diffusion has been widely observed by single particle tracking microscopy in complex

systems such as biological cells. The resulting time series are usually evaluated in terms of time

averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the

time averages remain random variables and hence irreproducible. Here we present a detailed

analysis of the time averaged mean squared displacement for systems governed by anomalous

diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour

of the time averaged mean squared displacement for two prominent stochastic processes, namely,

continuous time random walks and fractional Brownian motion. We also study the distribution

of the time averaged mean squared displacement around its ensemble mean, and show that this

distribution preserves typical process characteristics even for short time series. Recently, velocity

correlation functions were suggested to distinguish between these processes. We here present

analytical expressions for the velocity correlation functions. The knowledge of the results

presented here is expected to be relevant for the correct interpretation of single particle trajectory

data in complex systems.

I. Introduction

Single particle tracking microscopy provides the position time

series r(t) of individual particle trajectories in a medium.1–4

The information garnered by single particle tracking yields

insights into the mechanisms and forces, that drive or

constrain the motion of the particle. An early example of

systematic single particle tracking is given by the work of Jean

Perrin on diffusive motion.5 Due to the relatively short

individual trajectories, Perrin used an ensemble average over

many trajectories to obtain meaningful statistics. A few years

later, Nordlund conceived a method to record much longer

time series,6 allowing him to evaluate individual trajectories in

terms of the time average and thus to avoid averages over not

perfectly identical particles. Today, single particle tracking has

become a standard tool to characterise the microscopic

rheological properties of a medium,7 or to probe the active

motion of biomolecular motors.8 Particularly in biological

cells and complex fluids single particle trajectory methods

have become instrumental in uncovering deviations from

normal Brownian motion of passively moving particles.9–22

Classical diffusion patterns are sketched in the left panel of

Fig. 1. Accordingly, one may observe free diffusion, leading to

a linear growth with time of the secondmoment [Line 1 in Fig. 1].

Brownian motion may also be restricted (corralled, confined).

Confinement in a cell, for instance, could be due to the cell

walls. In that case the second moment initially grows linearly

Fig. 1 Diffusion modes of the time averaged mean squared displace-

ment (eqn (2)) as function of the lag time D. Left: Normal diffusion

growing like d2 ’ D (1), restricted (confined) diffusion with a turnover

from CD to CD0 (2), drift diffusion CD2 (3). Right: Ergodic

subdiffusion CDa (10), restricted ergodic subdiffusion turning over

from CDa to CD0 (20), non-ergodic subdiffusion CD (10 0), restricted

non-ergodic subdiffusion turning over from CD to CD1�a (20 0),

superdiffusion D1+a (30). Here, 0 o a o 1. Note the double-

logarithmic scale.
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with time and eventually saturates to its thermal value

equalling the second moment of the corresponding Boltzmann

distribution [Line 2]. In the presence of a drift the second

moment grows with the square of time [Line 3]. Such results

are typical for simple fluids. In more complex environments,

different patterns may be observed, as displayed on the right of

Fig. 1. Here, subdiffusion may occur, for which the second

moment grows slower than linearly with time [Line 10].

Restricted subdiffusion would depart from this behaviour to

reach a plateau [Line 20]. Driven motion may lead to a

superdiffusive power-law form of the second moment with

an exponent between 1 and 2 [Line 30]. However, as we

demonstrate below, subdiffusion may also be non-ergodic,

and the associated time averaged second moment may grow

linearly with time [Line 10 0]. Similarly strange behaviour may

be observed for restricted non-ergodic subdiffusion, which

exhibits a power-law growth, not a saturation to a plateau

[Line 20 0]. Non-ergodic processes come along with a significant

scatter between individual trajectories. This is an effect of the

ageing nature of the process that persists for long measure-

ment times. In the following we discuss in detail the behaviour

of passive subdiffusive motion in terms of time and ensemble

averages and address the peculiarities, that may arise for

non-ergodic systems.

Non-ergodic behaviour of the above sense is indeed

observed experimentally. Fig. 2 shows the time averaged mean

squared displacement for lipid granules in a living fission yeast

cell. The motion is recorded by indirect tracking in an optical

tweezers setup. Initially the granule is located in the bottom of

the laser trap potential such that the granule moves freely.

Eventually the granule ventures away from the centre of the

trap and experiences the Hookean trap force. As demonstrated

in a detailed analysis the granule motion indeed exhibits weak

ergodicity breaking, giving rise to the characteristic turnover

from an initially linear scaling d2 ’ D with the lag time D, to
the power-law regime d2 ’ D1�a.23 Moreover a pronounced

trajectory-to-trajectory scatter is observed, again typical for

systems with weak ergodicity breaking.

Free diffusion is typically quantified in terms of the second

moment. The mean squared displacement

hr2(t)iR
R
r
2P(r, t)d3r (1)

is obtained as the spatial average over the probability density

function P(r,t) to find the particle at position r at time t. The

quantity (1) therefore corresponds to the ensemble averaged

second moment of the particle position, denoted by angular

brackets, h�i. In particular, the time t enters into eqn (1) only as

a parameter. Conversely, single particle trajectories r(t) are

usually evaluated in terms of the time averaged mean squared

displacement defined as

d2ðD;TÞ � 1

T � D

Z T�D

0

rðtþ DÞ � rðtÞ½ �2dt; ð2Þ

where we use an overline � to symbolise the time average.

Here D is the so-called lag time constituting a time window

swept along the time series, and T is the overall measurement

time. The time averaged mean squared displacement thus

compares the particle positions along the trajectory as

separated by the time difference D.
In an ergodic system the time average of a certain quantity

obtained from sufficiently long time series is equal to the

corresponding ensemble mean.24,25 For instance, for the mean

squared displacement ergodicity would imply

lim
T!1

d2ðD ¼ t;TÞ ¼ hr2ðtÞi: ð3Þ

Brownian motion is ergodic, as well as certain stationary

processes leading to anomalous diffusion, such as fractional

Brownian motion considered below. There exist, however,

non-ergodic processes, which are intimately connected to

ageing properties. In what follows we discuss two prominent

models for anomalous diffusion, the stationary fractional

Brownian motion and the ageing continuous time random

walk, and analyse in detail the features of the associated time

averaged mean squared displacement.

Generally, anomalous diffusion denotes deviations from the

classical linear dependence of the mean squared displacement,

hr2(t)i C t. Such anomalies include ultraslow diffusion of the

form hr2(t)i Clogbt.26 In contrast, anomalous diffusion

processes may become faster than ballistic, for instance for

systems with correlated jump lengths or in systems governed

by generalised Langevin equations.27,28 Here we are interested

in anomalous diffusion with power-law dependence on time,29

hr2ðtÞi � 2d
Ka

Gð1þ aÞ t
a; ð4Þ

for which the anomalous diffusion exponent belongs to the

subdiffusive range 0 o a o 1, such that the limit a = 1

corresponds to Brownian motion. The proportionality factor

Ka in eqn (4) is the anomalous diffusion coefficient of physical

dimension cm2/seca. The embedding spatial dimension is d,

and eqn (4) includes the complete Gamma function G(z).

Fig. 2 Time averaged mean squared displacement of lipid granule

motion in fission yeast cell S.pombe, measured by optical tweezers. As

function of the lag time D the initially linear scaling d2 ’ D turns over

to the power-law regime d2 ’ D1�a, induced by the restoring force

exerted on the granules by the laser trap.23 Note also the characteristic

scatter between individual trajectories. Inset: Average behaviour of

the shown trajectories. In both graphs the unit of d2ðD;TÞ is V2

(volts squared), i.e., the direct output voltage of the quadrant photo-

diode. The voltage is directly proportional to the distance from the

centre of the laser trap.
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Subdiffusion of the form (4) with 0 o a o 1 occurs in the

following biologically relevant systems. Fluorescently labelled

mRNA in E. coli bacteria cells was observed to follow

d2ðD;TÞ ’ Da with a E 0.7.9 This result is consistent with

more recent findings according to which free RNA tracers in

living cells exhibit a E 0.8, while DNA loci show a = 0.4.10

Telomers in the nucleus of mammalian cells were reported to

follow anomalous diffusion with a E 0.3 at shorter times and

value a E 0.5 at intermediate times, before a turnover to

normal diffusion occurs.11 Also larger tracer particles show

anomalous diffusion, such as adeno-associated viruses of

radius E 15 nm in a cell with a= 0.5. . .0.9 12 and endogenous

lipid granules, of typical size of few hundred nm with a E
0.75. . .0.85.13–15 It should be noted that this subdiffusion

observed by single particle tracking microscopy is consistent

with results from other techniques, such as fluorescence

correlation spectroscopy17–20 or dynamic light scattering.21

Subdiffusion of biopolymers larger than some 10 kD in living

cells is due to molecular crowding, the excluded volume effect

in the superdense cellular environment.30–32 Larger tracer

particles also experience subdiffusion due to interaction with

the semiflexible cytoskeleton.22

Knowledge of the time or ensemble averaged mean squared

displacement of an anomalous diffusion process is insufficient

to fully characterise the underlying stochastic mechanism, as

the associated probability density P(r,t) is no longer necessa-

rily Gaussian, and therefore no longer specified by the first and

second moments, only.29 This property is in contrast to the

universal Gaussian nature of Brownian motion which is

effected by the central limit theorem. At the same time the

very nature of the anomalous diffusion process may result in

decisively different behaviours for diffusional mixing

and diffusion-limited reactions.33 In biological cells this

would imply significant differences for signalling and

regulatory processes. For a better understanding of the

dynamics in biological cells and other complex fluids knowl-

edge of the underlying stochastic mechanism is therefore

imperative.

Here we discuss the properties of continuous time random

walk (CTRW) processes with diverging characteristic waiting

time with respect to their time averaged behaviour, expanding

on our earlier work.34–36 We show that for free motion the lag

time dependence of the time averaged mean squared displace-

ment, d2ðD;TÞ ’ D, is insensitive to the anomalous diffusion

exponent a for CTRW processes. In contrast, for confined

CTRW subdiffusion a universal scaling behaviour emerges,

d2ðD;TÞ ’ D1�a, with dynamic exponent 1 � a [curves (10 0)

and (20 0) in Fig. 1]. Subdiffusion governed by fractional

Brownian motion (FBM) leads to the scaling d2ðD;TÞ ’ Da

of the time averaged mean squared displacement, turning over

to a saturation plateau under confinement, d2ðD;TÞ ’ D0

[curves (10) and (20) in Fig. 1].

We particularly emphasise the irreproducible nature of the

time averaged quantities and their associated scatter around

the ensemble mean for CTRW subdiffusion processes. This

randomness of the time averages is captured by the distribu-

tion function of the amplitude of the time average. We show

that even for relatively short trajectories this distribution is a

good characteristic for the underlying process. In contrast for

FBM processes the scatter typical of many single particle

experiments is not found in the long time limit.

In the remainder of this work, for simplicity we restrict the

discussion to the one-dimensional case (d= 1). Generalisation

to higher dimensions is straightforward. The article is

structured as follows. We start with a brief introduction to

CTRW and FBM. We then consider the cases of unbounded

motion and confined anomalous diffusion in the subsequent

two sections. The distribution of the time averages will be

presented thereafter. Finally, we discuss the velocity auto-

correlation functions for subdiffusive CTRW and FBM

processes, before presenting a concluding discussion.

II. Anomalous diffusion processes

Although both CTRW and FBM give rise to an ensemble

averaged mean squared displacement of the form (1), they are

fundamentally different processes, as outlined here. We note in

passing that also in the random motion on a fractal support

subdiffusion arises.37,38 We will not pursue this type of

anomalous diffusion in the following.

A. Continuous time random walk

CTRW theory dates back to the work of Montroll and

Weiss,39 and was championed in the analysis of charge carrier

motion in amorphous semiconductors by Scher and

Montroll.40 CTRW has become a standard statistical tool to

describe processes ranging from particle motion in actin

networks 22 to the tracer motion in groundwater.41

Each jump of a CTRW process is characterised by a random

jump length and a random waiting time elapsing before the

subsequent jump. At each jump the jump length and waiting

time are chosen independently. For a subdiffusive process we

assume that the variance of the jump lengths is given by a finite

value hdx2i, and we consider the unbiased case hdxi= 0. On a

lattice of spacing a, we would have hdx2i= a2. In contrast, the

waiting times t are drawn from the probability density

cðtÞ ’ �ta

jGð�aÞj t
�1�a ð5Þ

for large t, with 0o ao 1. This form of c is scale-free, that is,

the average waiting time hti diverges, causing effects such as

ageing 42,43 and weak ergodicity breaking.44,45 In eqn (5), the

quantity �t is a scaling factor. The anomalous diffusion

constant in this case becomes29,46

Ka ¼
hdx2i
2�ta

: ð6Þ

The scale-freeness of c(t) allows individual waiting times t to
become quite large. No matter how long a given time series is

chosen, single t values may become of the order of the length

of the entire time span covered in the trajectory. An example is

shown in Fig. 3: the stalling events with large waiting times t
are quite distinct. For values of the anomalous diffusion

exponent a that are closer to 1 the stalling is less pronounced.

Physically, the power-law form of the waiting time distribution

c(t) may be related to comb models,37 random energy

landscapes,42,47 or even the statistics in subrecoil laser

cooling;48 for more details, compare ref. 49–52.



This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 1800–1812 1803

B. Fractional Brownian motion

FBM is a Gaussian process with stationary increments. Its

position is defined in terms of the Langevin equation

dxðtÞ
dt
¼ xðtÞ; ð7Þ

or, alternatively,

xðtÞ ¼
Z t

0

xðt0Þdt0: ð8Þ

The motion is driven by stationary, fractional Gaussian noise

x(t) with zero mean hx(t)i and long-ranged noise correlation53

hxðt1Þxðt2Þi ¼ aK�a ða� 1Þjt1 � t2ja�2

þ 2aK�a jt1 � t2ja�1dðt1 � t2Þ;
ð9Þ

contrasting the uncorrelated noise for normal diffusion a = 1:

hx(t1)x(t2)i= 2K1d(t1 � t2). In eqn (9) the anomalous diffusion

exponent is connected to the traditionally used Hurst exponent

by H = a/2, and we introduce the abbreviation K�a ¼
Ka=Gð1þ aÞ for consistency with standard FBM notation.

For subdiffusion the fractional Gaussian noise is anti-

correlated, decaying like hxðt1Þxðt2Þi � �K�a aja� 1jjt1 � t2ja�2.
This implies that a given step is likely to go into the direction

opposite to the previous step. The corresponding oscillating

behaviour is seen in Fig. 3. The position autocorrelation function

of FBM becomes

hxðt1Þxðt2Þi ¼ K�a ðta1 þ ta2 � jt1 � t2jaÞ; ð10Þ

so that at equal times t1 = t2 we recover the mean squared

displacement (4).

If the fractional Gaussian noise is not considered external,

but the validity of the fluctuation-dissipation theorem is

imposed, one obtains the generalised Langevin equation

(GLE),54

m
d2xðtÞ
dt2

¼ ��g
Z t

0

ðt� t0Þb�2 dx
dt0

dt0 þ ZxðtÞ; ð11Þ

where we write b instead of the exponent a in eqn (9). In

the GLE (11), we defined the coupling coefficient

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT�g=½bK�bðb� 1Þ�

q
according to the fluctuation-

dissipation theorem, where kB is the Boltzmann constant

and T the absolute temperature. In what follows we only

consider the overdamped limit, in which the inertia term

md2x(t)/dt2 can be neglected. The GLE then gives rise to

the form

hx2(t)i C t2�b (12)

of the mean squared displacement. In contrast to FBM,

that is, the GLE leads to subdiffusion for persistent noise with

1 o b o 2, while 0 o b o 1 yields superdiffusion.

FBM and the related GLE are used to describe processes

such as long term storage capacity of water reservoirs,55

climate fluctuations,56 economical market dynamics,57 single

file diffusion,58 and elastic models.59 Motion of this type has

also been associated with the relative motion of aminoacids

in proteins,60 and the free diffusion of biopolymers under

molecular crowding conditions.10,19,61

III. Free anomalous diffusion

Let us begin with considering anomalous diffusion on an

infinite domain and without drift. To find an analytical

expression for the time averaged mean squared displacement

(2) we note that even a Brownian process recorded over a finite

time span T will show fluctuations in the number of jumps

performed during T. To average out these trajectory-to-

trajectory fluctuations we introduce the ensemble mean,

d2ðD;TÞ
D E

¼ 1

T � D

Z T�D

0

hðxðtþ DÞ � xðtÞÞ2idt: ð13Þ

We can then express the integrand in terms of the variance of

the jump lengths, hdx2i, and the average number of jumps

n(t,t+D) in the time interval (t, t+D), as follows:

h(x(t+D) � x(t))2i = hdx2in(t,t+D). (14)

For a regular random walk on average every jump occurs after

the waiting time hti. Thus n(t, t+D) = D/hti, and

d2ðD;TÞ
D E

¼ 2K1D; ð15Þ

where we defined the diffusion constant K1 = hdx2i/[2hti]. In
the Brownian limit the time averaged mean squared displace-

ment (15) in terms of the lag time D takes on exactly the same

form as the ensemble averaged mean squared displacement (1)

as function of time t. This is not surprising, as Brownian

motion is an ergodic process. For sufficient duration T of the

time records any time average converges to the corresponding

ensemble average, and thus the ensemble average in expression

(13) is no longer necessary.

Fig. 3 Time series x(t) for Brownian motion (top), CTRW (middle),

and FBM (bottom). The anomalous diffusion exponent for FBM and

CTRW is a = 0.5. For CTRW the stalling events are outstanding,

while in the case of FBM strong antipersistence occurs. Note that the

stalling events and the antipersistence are less pronounced for larger

values of a. Typical experimental data include additional noise, such

that the appearance of measured data will not display the ideal

behaviour shown here.
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A. Continuous time random walk

The number of jumps of a CTRW process with waiting time

distribution of the form (5) on average grows sublinearly with

time, n(0, t) B ta/[�taG(1+a)].49 This time evolution translates

into the mean squared displacement (1) with the anomalous

diffusion coefficient (6). Combining the time dependence of

n(0,t) for CTRW subdiffusion with the definition (13) we

obtain the following result for the time averaged mean squared

displacement,

d2ðD;TÞ
D E

� 2Ka
D

T1�a ð16Þ

in the limit D { T.34,62 This follows from expansion of the

relation n(t,t+D) = n(0,t+D) � n(0,t). The noteworthy

feature of this result is that the linear lag time dependence of

normal diffusion remains completely unaffected by the

anomalous nature of the stochastic process. Only the

dependence on the overall measurement time T witnesses the

underlying subdiffusion. Eqn (16) can be understood if we

notice that for normal diffusion we have d2(D, T) CD/hti
[since according to Einstein K1 p 1/hti] where hti is the mean

time between jump events. Now, for the subdiffusive case hti
diverges and must be replaced by

R T
0
cðtÞtdt / T1�a, which

explains the term d2 pD/T1�a. Fig. 4 shows 20 trajectories of a

CTRW process with a = 0.5, displaying the general trend

d2ðD;TÞ ’ D.
Rewriting the result (16) in the form

d2ðD;TÞ
D E

� 2 �KðTÞD ð17Þ

we can see that the effective diffusion coefficient
�
K(T) decays as

function of the measurement time T. The longer the system

evolves after its initial preparation, the less mobile it appears,

consistent with the ageing property of CTRW subdiffusion.

For instance, in the picture of the trapping events, in the

course of time deeper and deeper traps may be encountered by

the diffusing particle, such that it gets more and more stuck.

This increasing immobility is mirrored in the form
�
K(T). Note

that eqn (16) and (17) suggest that from measuring the D
dependence of an anomalous diffusion process one might draw

the erroneous conclusion that normal diffusion were observed.

The disparity between the time averaged mean squared

displacement (16) and its ensemble averaged counterpart (4)

demonstrates the weak ergodicity breaking characteristic of a

process with diverging time scale.42,44,45 Single or few, long

waiting times are also responsible for the pronounced

deviations between individual realisations shown in Fig. 4.

This apparent irreproducibility of the time averaged mean

squared displacement is again intimately coupled to the weak

ergodicity breaking nature of the CTRW subdiffusion process.

We will discuss this feature more quantitatively in terms of

the distribution fa(x) as function of the relative deviation

x ¼ d2=hd2i of the time averaged mean squared displacement

around its ensemble mean in section V.

B. Fractional Brownian motion

In contrast to the above behaviour of CTRW subdiffusion

processes, FBM is ergodic. Indeed, by help of the position

autocorrelation (10) the time averaged mean squared displace-

ment (13) becomes63

d2ðD;TÞ
D E

¼ 2K�aD
a; ð18Þ

exactly matching the ensemble averaged mean squared

displacement, hx2ðtÞi ¼ 2K�a t
a. However, ergodicity is reached

algebraically slowly,63 see also below. In Fig. 5 the compara-

tively minute scatter between individual trajectories supports

the ergodic behaviour of FBM processes. The somewhat larger

deviations at longer lag times are due to worsening statistics

when D - T.

IV. Confined anomalous diffusion

Since the motion of tracer particles is typically confined, for

example, by the cell walls or internal membranes, we now

consider the important case of anomalous diffusion in a

bounded domain.

Fig. 4 Time averaged mean squared displacement for unconfined

CTRWmotion with a= 0.5, shown for 20 individual trajectories. The

overall measurement time is T = 105 (a.u.). Note the local changes of

the slope in the trajectories as well as the complete stalling in the lowest

curve, all bearing witness to the scale-free nature of the underlying

waiting time distribution c(t) C �ta/t1+a.

Fig. 5 Time averaged mean squared displacement for unconfined

FBM with a = 0.5. The scatter between individual trajectories is

minute, mirroring the ergodicity of this process.
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In a finite interval [�L, L] the mean squared displacement of

a Brownian particle initially released well away from the

boundaries will grow linearly in time and eventually turn

over to a stationary plateau of magnitude hx2ist = L2/3.

Similarly, if the particle evolves in the confinement of

an external harmonic potential of the form V(x) = 1
2
mo2x2,

the thermal value hx2ith = kB T/[mo2] will eventually be

attained.

A. Continuous time random walk

How is this behaviour modified for a CTRW subdiffusion

process? Under the influence of an arbitrary external potential

VðxÞ ¼ �
R x

Fðx0Þdx0 defining the force F(x), CTRW sub-

diffusion can be described by the fractional Fokker-Planck

equation,29,46 or, equivalently, in terms of the following

coupled Langevin equations:64

dxðsÞ
ds
¼ K

kBT
FðxÞ þ ZðsÞ ð19aÞ

dtðsÞ
ds
¼ oðsÞ: ð19bÞ

Here the position x is expressed in terms of the parameter s

(the internal time), and driven by the white Gaussian noise

Z(s). Thus, eqn (19a) defines standard Brownian motion x(s),

where K is the diffusivity for the normal diffusion process in

internal time s. Laboratory time t is introduced by the

so-called subordination through the process o(s), given by

the probability density function29

ptðsÞ ¼
1

a
Ka

K

� �1=a
t

s1þ1=a
la

Ka

K

� �1=a
t

s1þ1=a

 !
; ð20Þ

where la(z) is a one-sided Lévy stable probability density with

Laplace transform
R1
0 laðzÞ expð�uzÞdz ¼ expð�uaÞ. Thus,

eqn (19b) transforms the Brownian process x(s) with

diffusivity K into the subdiffusive motion with generalised

diffusivity Ka. On the basis of this scheme, the ensemble

averaged position–position correlation in an arbitrary

confining potential V(x) becomes

hxðt1Þxðt2Þi ¼ ðhx2iB � hxi
2
BÞ

Bðt1=t2; a; 1� aÞ
GðaÞGð1� aÞ þ hxi

2
B;

ð21Þ

valid in the limit t2 Z t1 c (1/[Kal1])
1/a, where l1 is the

smallest non-zero eigenvalue of the corresponding

Fokker-Planck operator.35 Eqn (21) demonstrates that,

despite the confinement, the process is non-stationary. In

result (21) we used the incomplete Beta function

Bðt1=t2; a; 1� aÞ �
Z t1=t2

0

za�1ð1� zÞ�adz ð22Þ

and defined the first and second Boltzmann moments, whose

general definition is

hxniB ¼
1

Z

Z 1
�1

xn exp �VðxÞ
kBT

� �
dx: ð23Þ

The partition function reads

Z ¼
Z 1
�1

exp �VðxÞ
kBT

� �
dx: ð24Þ

At large time separation, t2 c t1, the position autocorrelation

decays algebraically,

hxðt1Þxðt2Þi � ðhx2iB � hxi
2
BÞ

ðt1=t2Þa

aGð1þ aÞGð1� aÞ þ hxi
2
B;

ð25Þ

towards the value xh i2B. The corresponding limiting behaviour

of the incomplete Beta function reads

Bðt=ðtþ DÞ; a; 1� aÞ
GðaÞGð1� aÞ � 1� sinðpaÞ

ð1� aÞp
D
t

� �1�a
: ð26Þ

Inserting expression (21) into the definition of the time

averaged mean squared displacement (13) we obtain35

d2ðD;TÞ
D E

¼ 1

T � D

Z T�D

0

½hxðtþ DÞxðtþ DÞi

þ hxðtÞxðtÞi � 2hxðtþ DÞxðtÞi�dt:
ð27Þ

Then, with relation (26) we arrive at the scaling behaviour

d2ðD;TÞ
D E

� ðhx2iB � hxi
2
BÞ

2 sinðpaÞ
ð1� aÞpa

D
T

� �1=a

; ð28Þ

valid in the limits D/T{ 1 and Dc (1/[Kal1])
1/a. Result (28) is

quite remarkable: instead of the naively assumed saturation

toward the stationary plateau a power-law growth

hd2ðD;TÞi � ðD=TÞ1�a is observed. Only when the lag time D
approaches the overall measurement time T the singularity

in expression (13) causes a dip toward the plateau of the

ensemble averaged mean squared displacement. Additionally

eqn (21) and (28) are universal in the sense that the exact form

of the confining potential solely enters into the prefactor

through the first two moments of the Boltzmann distribution

corresponding to the confining potential V(x). We note that

the asymptotic scaling C (D/T)1�a is consistent with the

numerical analysis presented in ref. 65.

Fig. 6 depicts the ensemble mean of the time averaged mean

squared displacement (13) for two types of confinement, an

harmonic potential and a box potential. The particle is initially

placed at the bottom of the potential well and in the middle of

the box potential, respectively. This is why at short lag times

the particle exhibits the linear scaling hd2ðD;TÞi ’ D typical

for unconfined motion, before turning over to the confine-

ment-induced scalingCD1�a. Note that this plot is fit-free, i.e.,

the theoretically calculated asymptotic behaviours nicely fall

on top of the simulations results.

As shown in Fig. 7 individual trajectories still exhibit the

pronounced scatter typical for CTRW subdiffusion. Visually

the scatter does not change between the unbiased initial

motion and the confinement-dominated part of the process.

This is due to the fact that the scatter is caused by the

scale-freeness of the waiting times. In our process waiting

times and jump lengths are decoupled, corresponding to the

subordination property of CTRW subdiffusion.29
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B. Continuous time random walk with waiting time cutoff

What happens if we introduce a cutoff in the power-law of the

waiting time distribution of the form

cðtÞ ¼ d

dt
1� �ta

ð�tþ tÞa expð�t=t
�Þ

� �
; ð29Þ

in which a characteristic time scale t* is introduced, terminat-

ing the power-law scaling? For the waiting time density (29)

the characteristic waiting time
R1
0 tcðtÞdt becomes finite. At

sufficiently short times one would expect this process to still

exhibit the features of CTRW subdiffusion, while at times

t c t* the process should converge to regular Brownian

motion with a Gaussian propagator. In Fig. 8 we demonstrate

that for a suitable choice of the cutoff time t* the behaviour of
the time averaged mean squared displacement d2ðD;TÞ under
confinement preserves the characteristic non-ergodic features

of CTRW subdiffusion, i.e., the turnover from the initial

scalingCD to the confinement-dominated scaling D1�a. Below

we will show that at the same time the distribution of the time

average around its ensemble mean is significantly altered.

C. Fractional Brownian motion

Ergodicity remains unaffected for FBM, that is confined to an

interval of size [�L, L]. Namely, convergence of d2ðD;TÞ is
observed toward the stationary value hx2ist = L2/3.66 For

FBM under the influence of an harmonic potential V(x) =
1
2
mo2x2 the position–position correlation can be calculated

exactly.67 Inserting into the ensemble mean (13) of the time

averaged mean squared displacement one can show that the

initial behaviour hx2(t)iC ta turns over to the stationary value

hx2ist = G(1 + a)kB T/[mo2]. In general, the time averaged

mean squared displacement for confined FBM converges to a

constant:

d2ðD;TÞ
D E

� const: ð30Þ

V. Fluctuations of the time average and ergodicity

breaking parameter

The deviations of the time averaged mean squared displace-

ment d2ðD;TÞ between individual trajectories can be quanti-

fied in terms of the probability density function fa(x) of the
dimensionless ratio

x � d2ðD;TÞ
d2ðD;TÞ
D E ð31Þ

of the time averaged mean squared displacement over its

ensemble mean. For an ergodic process this distribution is

necessarily sharp,

ferg(x) = d(x � 1), (32)

Fig. 6 Simulated behaviour of hd2ðDÞi for an harmonic binding

potential V (x) = 2x2 (&) and a particle in a box of length 2 (J),

with a = 1/2, measurement time T = 107 (a.u.), kB T = 0.1, and

K0.5 = 0.0892. Without fitting, the lines show the analytic results for

the transition from CD1 for short lag times according to eqn (16)

(– – and ���) to CD1�a for long lag times, eqn (28) (—). For long D,
hd2ðDÞi=hx2iB exhibits universal behaviour, in the sense that the curve

does not depend on the external field.

Fig. 7 Scatter between individual trajectories in the harmonic

potential V(x) = 2x2. The extent of the deviations between the

trajectories does not change qualitatively between the initial unbiased

motion and the later confinement-dominated regime. The squares (&)

represent simulations results for the ensemble average hd2ðD;TÞi.
Same parameters as in Fig. 6.

Fig. 8 CTRW subdiffusion for a waiting time with exponential

cutoff, eqn (29), in the box [�3, 3] with reflecting boundary conditions.

The generic behaviour of initial and final scaling, d2ðD;TÞ ’ D
and CD1�a remains unaltered. We chose a = 0.8, �t = 1, t* = 20

and overall measurement time T = 1000 (a.u.).
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for long measurement time T. Deviations from this form are

expected for non-ergodic processes such as CTRW sub-

diffusion, but also for relatively short trajectories. We here

address both effects and demonstrate that the distribution

fa(x) is a quite reliable means to distinguish different

stochastic processes even when the recorded time series are

fairly short.

A. Continuous time random walk

For CTRW subdiffusion with power-law waiting time

distribution (5) the distribution assumes the form34,68

faðxÞ ¼
Gð1þ aÞ1=a

ax1þ1=a
la

Gð1þ aÞ1=a

x1=a

 !
ð33Þ

for T - N, where la(z) is again a one-sided Lévy stable

distribution, whose Laplace transform is L {la(z)} =

exp(�ua). Special cases include the Brownian limit (32) for

a = 1 and the Gaussian shape

f1=2ðxÞ ¼
2

p
exp � x2

p

� �
ð34Þ

for a = 1/2. In fact, we observe an exponentially fast decay of

fa(x) with large x for all 0 o a o 1, compare Appendix A.

For short trajectories the basic shape of the distribution

fa(x) is surprisingly well preserved.69 This is demonstrated in

Fig. 9, in which the characteristic asymmetric shape with

respect to the ergodic value x = 1 for the case a = 0.5 is

reproduced for a process with T = 128, even for a lag time as

long as D = 100. No significant dependence on the confine-

ment is observed. Also for larger values of a the finite value for
small x is similarly reproduced for short trajectories,69

pointing at the quite remarkable reliability on the shape of

the scatter distribution fa(x) for CTRW subdiffusion. As

we show below, the distribution for FBM processes with its

zero value at x = 0 can be clearly distinguished from the

CTRW form.

A useful parameter to quantify the violation of ergodicity is

the ergodicity breaking parameter 34

EB ¼ lim
T!1

d2
� �2	 


� d2
D E2

d2
D E2 ¼ 2Gð1þ aÞ2

Gð1þ 2aÞ � 1 ð35Þ

EB varies from EB = 1 for a - 0 monotonically to EB = 0

in the Brownian limit a = 1. For the special case a = 1/2

one finds EB = p/2 � 1 E 0.57, while for a = 0.75,

EB E 0.27.

B. Continuous time random walk with waiting time cutoff

The scatter distribution is sensitive to few extreme events.

When these are lacking, the distribution should be significantly

different from the form discussed for CTRW subdiffusion with

diverging characteristic time scale. Indeed, as shown in Fig. 10

for the cutoff waiting time distribution defined through

eqn (29), fa(x) drops down to zero around x = 0 and assumes

an almost Gaussian shape around the ergodic value x = 1.

Note that the simulations were performed with the

same parameters as for Fig. 8, in which the breaking of

ergodicity still persists, despite the cutoff. This demon-

strates that different quantities have different sensitivity to

the cutoff.

C. Fractional Brownian motion

FBM is based on long-ranged correlations. However, we can

obtain an approximate expression for the scatter distribution69

fðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T � D
4pty

r
exp �ðx� 1Þ2ðT � DÞ

4ty

 !
; ð36Þ

where tw is an intrinsic time scale. Expression (36) is valid for

sufficiently small lag times D, for which the correlations are

neglected.69 Note that this distribution is independent of a and

Fig. 9 Distribution fa(x) of the time averaged mean squared

displacement, with x ¼ d2=hd2i for a CTRW process with a = 0.5,

�t = 1, and T = 128 (a.u.). The filled and open symbols, respectively,

represent the unconfined case and confined motion on the interval

[�2, 2]. We see quite good agreement with the expected Gaussian

limiting distribution of the scatter, eqn (34), centred around x = 0. In

the inset we show the case for the largest measured lag time, D = 100,

also in good agreement with the predicted shape of the distribution.

Fig. 10 Scatter distribution fa(x) for CTRW subdiffusion with

cutoff, as defined in eqn (29). The observed form is clearly different

from the much more asymmetric shape in Fig. 9. The value of fa(x)
reaches zero for small values of x. An almost Gaussian shape centred

around the ergodic value x = 1 is observed. Same parameters as in

Fig. 8.
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centred around the ergodic value x = 1. In particular, in the

long measurement time limit T - N, the distribution

converges to the sharp form f(x) = d(x � 1). Also this

behaviour is surprisingly well preserved for short trajectories,

as demonstrated in Fig. 11.

For FBM one can define a quantity similar to the ergodicity

breaking parameter (35). Namely, without taking the long

measurement time limit, we obtain the normalised variance of

the time averaged mean squared displacement

V ¼
d2ðD;TÞ
� �2	 


� d2ðD;TÞ
D E2

d2ðD;TÞ
D E2 : ð37Þ

It turns out that the convergence to ergodicity is algebraically

slow, and for subdiffusion 0 o a o 1 one obtains a decay,

which is inversely proportional to T:63

V � kðaÞ D
T
: ð38Þ

The coefficient k(a) here is defined as63

kðaÞ ¼
Z 1
0

ððtþ 1Þa þ jt� 1ja � 2taÞdt: ð39Þ

It increases continuously from zero at a = 0 to k(1) = 4/3.

VI. Velocity autocorrelation functions

A typical quantity accessible from experimental data is the

velocity autocorrelation function, which is defined through

CðeÞv ðtÞ ¼
1

e2
hðxðtþ eÞ � xðtÞÞðxðeÞ � xð0ÞÞi: ð40Þ

Here the velocity is defined as the difference quotient v(t) =
e�1[x(t+e) � x(t)]. The velocity autocorrelation (40) was

suggested as a tool to distinguish between different sub-

diffusion models.10 We show here that for confined processes

the shape of the velocity autocorrelation function does

not allow for a significant distinction between subdiffusive

CTRW and FBM. Note that the calculation of C(e)
v (t) amounts

to determine four two-point correlation functions of the type

hx(t1)x(t2)i.

A. Continuous time random walk

For unbounded CTRW process starting with initial condition

x(0) = 0, the position correlation function is given by the

following expression,70

hxðt1Þxðt2Þi ¼
2Ka

Gð1þ aÞ ½minft1; t2g�a: ð41Þ

This result for free CTRW is due to the fact that the jump

lengths in the interval (t1,t2) for t2 4 t1 have zero mean. With

eqn (41) we find

C
ðeÞ
v ðtÞ

C
ðeÞ
v ð0Þ

¼
ea�ta
ea t 	 e
0 t 
 e

�
ð42Þ

The velocity autocorrelation function for an unbounded

CTRW process does not yield negative values due to the

absence of correlations for different jumps. In this case

the velocity autocorrelations can be easily distinguished from

the behaviour of FBM processes, see below. Note that

C(e)
v (t) in eqn (42) is non-analytic at t = e, an observation

that is confirmed in simulations. The behaviour of the velocity

autocorrelations for CTRW subdiffusion are displayed in

Fig. 12.

For a confined CTRW process the situation is quite

different. To explore the behaviour of the corresponding

velocity autocorrelation function we use the general result

for the correlation function of confined CTRW, eqn (21).

Fig. 11 Scatter distribution f(x) of the time averaged mean squared

displacement, with x ¼ d2=hd2i for FBM subdiffusion with a = 0.5

and T = 128 (a.u.). The filled and open symbols, respectively,

represent the cases for unconfined and confined motion. For small

values of the lag time D we see quite good agreement with the expected

Gaussian limiting distribution of the scatter, eqn (36), that is

centred around x = 1. For larger values of D deviations are

observed, however, even for D = 100 the value around x = 0 is

consistently zero. A similar behaviour is found for larger values of a.69

Note that when T - N the process is ergodic and f(x) approaches
a d function.

Fig. 12 Normalised velocity autocorrelation function C(e)
v (t) for an

unconfined CTRW process with a = 0.5. The simulations (J) were

performed for time 10 000 (a.u) with e = 10 (a.u). The theoretical

behaviour (—) is given by eqn (42).
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For simplicity we assume a symmetric potential such that

hxiB = 0. With the initial condition x(0) = 0 we obtain

C
ðeÞ
v ðtÞ

C
ðeÞ
v ð0Þ

¼ 1

GðaÞGð1� aÞ

�
B e

eþt ; a; 1� a
� �

� B t
e ; a; 1� a
� 

e 
 t

B e
eþt ; a; 1� a
� �

� B e
t ; a; 1� a
� 

e 	 t

8><
>: :

ð43Þ

Fig. 13 and 14 (for the absolute value) display excellent

agreement of eqn (43) with simulations of CTRW subdiffusion

for a lattice of size 10 with reflecting boundary conditions, and

a = 1/2. We observe that for confined motion the CTRW

velocity autocorrelation function indeed attains negative

values and has a minimum on t = e, as the confinement

effectively induces correlations. For long t the velocity

autocorrelation function decays to zero (from the negative

side) as the power-law

C
ðeÞ
v ðtÞ

C
ðeÞ
v ð0Þ

� � 1

GðaÞGð1� aÞ
e
t

� �1þa
; ð44Þ

valid for t c e.

B. Fractional Brownian motion

For free FBM the position correlation function (10) together

with the definition (40) produce the result

C
ðeÞ
v ðtÞ

C
ðeÞ
v ð0Þ

¼ ðtþ eÞa � 2ta þ jt� eja

2ea
: ð45Þ

This function yields negative values for sufficiently long t, and
its minimum value (2a�1 � 1) is assumed at t = e. For long t
it decays toward zero from the negative side in the power-

law form

C
ðeÞ
v ðtÞ

C
ðeÞ
v ð0Þ

� � a� a2

2

e
t

� �2�a
ð46Þ

valid for t c e.
We can see that both the velocity autocorrelation function

of the confined CTRW and the one for free FBM acquire

negative values and decay as power-laws for large t. Further
both obtain a sharp minimum for t = e. Confined FBM

behaves similarly to free FBM, see Fig. 15. From our analysis

it becomes clear that the shape of the velocity autocorrelation

function may not be a good diagnosis tool to distinguish

between subdiffusive CTRW and FBM processes. We note

that for CTRW subdiffusion the time averaged correlation

functions will be random variables, exactly like the time

averaged mean squared displacement.

VII. Discussion

The physical mechanisms leading to subdiffusion in biological

cells or other complex systems are varied. The anomalous

diffusion of inert biopolymers larger than some 10kD in living

cells is due to molecular crowding, these are excluded volume

Fig. 13 Normalised velocity autocorrelation function C(e)
v (t) for a

free FBM process and a confined CTRW process with a = 0.5. The

CTRW simulations (J) were performed over the time range 10 000

(a.u), and the system corresponds to a particle on a lattice with ten

lattice points and reflecting boundaries. We chose e = 10 (a.u). The

theoretical prediction for the CTRW (—) is given by eqn (43), and for

FBM (- -) by eqn (45).

Fig. 14 Absolute value of the normalised velocity autocorrelation

function C(e)
v (t) for confined CTRW process with a= 0.5. The CTRW

simulations (J) are based on the parameters from Fig. 13. The theory

line (—) corresponds to eqn (43).

Fig. 15 Normalised velocity autocorrelation function C(e)
v (t) for

confined FBM with a = 0.5. The simulations were performed on the

interval [�2, 2], and e = 10 (a.u.). For comparison, the velocity

autocorrelation for free FBM is drawn based on eqn (45).
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effects in the viscoelastic, superdense cellular environment.30–32

Potentially similar effects occur in single file diffusion: A tracer

particle diffusing in a one dimensional channel and interacting

with other Brownian particles will slow down its random

motion, and subdiffusion with a = 1/2 is observed.58 What

is the resulting motion of such anomalous diffusion processes

like? Consider a particle, that gets repeatedly trapped during

its random walk. Such trapping may give rise to a broad

distribution of waiting times, as embodied in the CTRW

model. Broad distributions of trapping times could be due to

chemical binding of the tracer particle to its environment on

varied time scales, or due to active gelation/de-gelation of the

crowding particles. Long-tailed trapping time distributions

were observed for mm-sized particles due to interaction with

a semiflexible actin mesh.22 There, the anomalous diffusion

exponent a depends on the size of the tracer particles versus the

typical actin mesh size. Alternatively, motion patterns of FBM

type may be due to coupling to the viscoelastic crowding

environment.19 Yet other approaches are based on polymer

dynamics. De Gennes’ reptation model of a polymer diffusing

in a tube formed by foreign chains in a melt yields subdiffusion

with a = 1/4, and was used as a possible explanation of the

short time dynamics of telomere motion.11

One may speculate whether the widely observed sub-

diffusion of biomolecules and passive tracers is a mere

coincidence of nature that should be attributed to the dense

environment in the cell and/or to the wide distribution of

obstacles and reactions in the cell. Or, maybe, subdiffusion is

by itself a goal which was obtained via evolution? There exist

claims that sub-diffusion is useful in certain cellular search

strategies.9,71 One may also view subdiffusion to be a

sufficiently slow process to help maintaining the organisation

of the genome in the nucleus of the cell without the need for

physical compartments.11 Since reactions in many cases are

controlled by diffusion, the emergence of slower-than-normal

diffusion has far-reaching implications to signalling and

regulatory processes in the cell. The standard theories of

diffusion-controlled reactions under such circumstances must

be replaced by subdiffusion-controlled reaction models. While

these issues are clearly important, we here focused more on the

characterisation of trajectories of single particles in the cell,

in particular, as a quantitative diagnosis method to probe

the nature of the stochastic motion in cells and other

complex media.

Single particle tracking microscopy is a widely used

technique. It allows one to locally probe complex systems in

the liquid phase in situ. In particular it has become one of the

standard tools in biophysical, colloidal, polymeric, and

gel-like environments. The motion of tracers in these systems

is often anomalous. Typically the experimentally recorded

time series are evaluated in terms of the time averaged mean

squared displacement d2ðD;TÞ. Here we collected the

behaviour of d2ðD;TÞ for the two most prominent anomalous

stochastic processes, the continuous time random walk and

fractional Brownian motion.

For CTRW subdiffusion, connected with ageing and weak

ergodicity breaking, in an unconfined system the time

averaged mean squared displacement scales linearly in time,

d2ðD;TÞ [eqn (16)], renouncing the anomalous nature of the

process. Only the dependence on the overall measurement time

T pays tribute to the underlying subdiffusion. This behaviour

contrasts the anomalous scaling hx2(t)i = 2Kat
a of the

ensemble averaged mean squared displacement. Under con-

finement no plateau value is observed as in the ensemble

average, instead, a power-law of the form d2ðD;TÞ ’ D1�a,

eqn (28), is found. Interestingly, this characteristic behaviour

is approximately preserved when an appropriate cutoff

in the waiting time is introduced. Conversely the distri-

bution of the time averaged mean squared displacement

around its ensemble mean becomes almost Gaussian in

presence of the cutoff, while it has an exponential decay and

a finite value at x = 0 when the system is non-ergodic and

exhibits ageing.

FBM, in contrast, is ergodic, although ergodicity is reached

algebraically slowly. Free FBM subdiffusion shows

d2ðD;TÞ ’ Da, eqn (18), while under confinement the plateau

value of the ensemble average is reached, eqn (30). For

finite trajectories the distribution of the time averaged mean

squared displacement is approximately Gaussian for short

lag times.

Our analysis demonstrates how different the two stochastic

processes are, despite sharing the same form of the ensemble

averaged mean squared displacement. At the same time the

velocity autocorrelation of confined CTRW subdiffusion is

hardly distinguishable from that of FBM subdiffusion. Given

a recorded time series of anomalous diffusion from experiment

it is important to know more precisely which stochastic

process is responsible for the observed behaviour, in parti-

cular, with respect to diffusion-limited reactions, general

transport behaviour, and related processes such as gene

regulation. The analysis presented here, along with comple-

mentary tools discussed in ref. 23, 61 and 72, will be

instrumental in the classification of anomalous diffusion

behaviour.

We note that weak ergodicity breaking was also observed in

blinking quantum dots45 due to power law distributed sojourn

times in off and on states. The process the quantum dot

undergoes is a kind of CTRW process with two states only

(on and off), also called a Lévy walk. There time averages like

the intensity correlation function or averaged intensity of

emission remain random variables even in the long measure-

ment time. Thus weak ergodicity breaking seems a widely

observed phenomenon, found both in complex systems like the

cell and in deceptionally simple nano objects.

Appendix A: Scatter distribution

Using the theory of Fox H-functions we obtain the exact form

for the distribution fa(x) of the dimensionless variable x:73

faðxÞ ¼
1

a2x
H1;0

1;1

x1=a

Gð1þ aÞ1=a

����� ð0; 1Þð0; 1=aÞ

" #
: ðA1Þ

This function has the series expansion

faðxÞ ¼
1

ax

X1
n¼0

ð�1Þn½Gð1þ aÞ=x�n

n!Gð�anÞ ; ðA2Þ
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and the asymptotic form

faðxÞ ’ ðx1=aÞ
ð1�aÞ=ð2aÞ�a exp �ð1� aÞ aax

Gð1þ aÞ

� �1=ð1�aÞ !

ðA3Þ

valid at x c G (1+a).
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