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a b s t r a c t

Fractional moments have been investigated by many authors to represent the density of
univariate and bivariate random variables in different contexts. Fractional moments are
indeed important when the density of the random variable has inverse power-law tails
and, consequently, it lacks integer order moments. In this paper, starting from the Mellin
transform of the characteristic function and by fractional calculus method we present a
new perspective on the statistics of random variables. Introducing the class of complex
moments, that include both integer and fractional moments, we show that every random
variable can be represented within this approach, even if its integer moments diverge.
Applications to the statistical characterization of raw data and in the representation of both
random variables and vectors are provided, showing that the good numerical convergence
makes the proposed approach a good and reliable tool also for practical data analysis.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Fractionalmoments are very useful in dealingwith random variables with power-law distributions, F(x) ∼ |x|−µ,µ > 0,
where F(x) is the distribution function. Indeed, in such cases, moments

〈
|X |q

〉
exist only if q < µ and integer order moments

greater than µ diverge. Distributions of this type are encountered in a wide variety of contexts; see the extensive literature
in Refs. [1,2] where power-law statistics appear in the framework of anomalous diffusion in many fields of applied science.
To name but a few examples, we mention the travel length distribution in human motion patterns and animal search
processes [3–6], fluctuations in plasma devices [7,8], scaling laws in polymer physics and its applications to gene regulation
models [9,10], as well as the distribution of time scales in processes such as the motion of charge carriers in amorphous
semiconductors [11], tracer dispersion in groundwater [12], or sticking times in turbulent flows [13].
The lack of moments is of course a great limitation for the characterization of such distributions, because many methods

of statistical analysis fail, like for example, the representation of the characteristic function or the log-characteristic function
bymoments or by cumulants, respectively. Then, it is necessary to resort to other distribution properties and a good option is
given by the so-called fractional moments which have been extensively studied in the seventies and have recently attracted
new interest both in theoretical [14–16] and in experimental settings [17]. In particular, in Refs. [15,16] themoment problem
originally stated in terms of integer moments, has been extended to fractional moments where it has been shown that the
knowledge of some fractionalmoments 〈Xq〉 improves significantly the convergence speed of themaximumentropymethod
for non-negative densities – which is defined in [0,∞[ – if a proper optimization procedure is used in selecting the order q.
This can be explained by the non-local nature of fractional moments that will be better highlighted in the following.
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Fractional moments of a non-negative random variable are expressible by the Mellin transform of the density and this
fact has beenwidely used in literature principally in the field of the algebra of randomvariables. That is, theMellin transform
is the principal mathematical tool to handle problems involving products and quotients of independent random variables.
As the approach presented in this paper is based on the Mellin transform, a brief outline of previous results is given in the
following.
The first author who developed a systematic method to express the density of the product of independent random

variables by the Mellin transform was Epstein. As consequence, in his pioneering work [18] he recognizes that any density
function can be obtained as Mellin convolution of two independent densities. It must be remarked that such a result was
already obtainedbyRef. [19] outside the framework of integral transforms.Manyother studies on theuse ofMellin transform
extending Epstein’swork have been reported providing explicit analytic forms for products of independent randomvariables
with assigned densities. In Ref. [20] examples on product and quotient of independent random variables with Rayleigh
distribution and moments of Rice distribution are obtained by Mellin transform tables. An extensive use of such concepts
and the state-of-art on the algebra of random variables may be found in Ref. [21].
Another research direction onMellin applications in probability is represented by the use of special functions like Fox’ H-

functions and the Meijer’s G-functions, due principally to Mathai and co-workers. Such functions are indeed representable
as Mellin–Barnes integrals of the product of gamma functions and are therefore suited to represent statistics of products
and quotients of independent random variables whose fractional moments are expressible as gamma or gamma related
functions. Applications of special functions to statistics and probability theory can be found in Refs. [22–27] and references
therein.
Whether fractionalmoments exists and how they are correlated to local properties of the characteristic function has been

investigated in Refs. [28–31]. In particular, in Ref. [28] a relation is derived between the absolute moment of real order and
integrals involving theMarchaud fractional derivative of the characteristic function. Other relevant studies on the existence
of fractional (absolute) moments can also be found in Refs. [32–34].
All the cited works share the common issue of using the Mellin transform because it naturally coincides with moments

of the type 〈Xγ−1〉 if the random variable X has a density defined only in the positive domain. In this paper, following the
previous results in Ref. [35], it is shown that applying the Mellin transform to the characteristic function, and not to the
density, a sound representation of the statistics of general multivariate random variables is possible. In this way, exploiting
the Hermitian nature of the characteristic function, a unique representation valid for every random variable and vectors,
defined in the whole real range is presented. Further, by means of simple properties of fractional operators, a generalization
of thewell-known link betweenmoments and thederivative of the characteristic function evaluated in zero is provided. Such
a link is useful because it allows one to find existence criteria for fractional moments that can be derived in a simpler way
with respect to Ref. [28] and clarifies the non-local nature of fractional moments. Moreover, this approach that starts from
the characteristic function plainly applies to randomvariables defined in thewhole domainwithout the need of partitioning.
Such theoretical aspects go alongwith a better numerical treatment of the inverseMellin transform involved in this approach
as it will be stressed in the following.
In the application section, it will be shown that the proposed approach is extremely useful in the statistical

characterization of rawdata and in the representation of both randomvariables and vectorswith small computational effort.
Thus, the good numerical convergencemakes the proposed approach a good and reliable tool also for data analysis.Wewant
to stress that the representation proposed in this paper can be applied to any Fourier pair functions used in statistical analysis
and, very recently, applications to the representation of stochastic processes have been proposed in Refs. [36,37].

2. Probabilistic characterization of random variables

A brief outline of the basic tools of probability will serve to frame the problem in hand and to introduce symbols. Let
(S,A,P ) be a probability space, where A is a collection of events defining a σ -algebra of subsets on the sample space S,
andP a probability measure that assigns a number to each event onA and X : (S,A)→ (R,B) a random variable, where
B is a Borel set. F (x) = Pr (X < x) is the cumulative distribution and p (x) = dF/dx is the probability density function
(PDF). The Fourier transform of p(x), denoted as F p = ϕ(u), is the characteristic function (CF), that is

ϕ (u) = 〈exp (iuX)〉 =
∫
∞

−∞

exp (iux) p (x) dx (1)

with u ∈ R, i =
√
−1 and 〈·〉means expectation, i.e. 〈g (X)〉 =

∫
∞

−∞
g (x) p (x) dx. Expectations of the functions g (X) = X j

with j = 1, 2, . . . , provided they exist, give the integer moments of X , indicated by 〈X j〉. These integer moments are related
to the CF by the Taylor expansion

ϕ (u) =
∞∑
j=0

〈(iX)j〉
uj

j!
(2)

due to the property

〈(iX)j〉 = djϕ (u) /duj
∣∣∣∣
u=0
. (3)
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Whilst Eq. (2)might be useful to evaluate the CF frommoments, its Fourier transform that expresses the relation between
density and moments is not useful from the computational point of view, as it reads

p (x) =
∞∑
j=0

(−1)j

j!
〈X j〉
djδ (x)
dxj

(4)

where δ (x) is the Dirac’s delta. Then, it is not possible to use integer moments to represent the PDF by Eq. (4). It must be
stressed that Eq. (2) does not hold for every distribution. This is the case for distributions with heavy tails, and consequently
with divergent integer moments. Further, the use of Eq. (2) is not always feasible, although appealing, because truncation
of the Taylor expansion involved produces a divergent behavior of the CF at u→∞.
In a recent paper [35], it has been proposed to use a new class of moments, namely complex moments, to represent

both the CF and the PDF of a random variable. The fundamentals of the generalization of Eq. (2), Eqs. (3) and (4) are briefly
summarized hereinafter and it will be shown that such representation does not entail the drawback of Eqs. (2) and (4).
To this aim, let γ = ρ + iη, with ρ > 0 and η ∈ R, and let

(
Iγ±f
)
(x) and

(
Dγ±f

)
(x) denote the Riemann–Liouville (RL)

fractional integral and derivative, while
(
Dγ±f

)
(x) is the Marchaud fractional derivative, namely(

Iγ±f
)
(x)=def

1
Γ (γ )

∫
∞

0
ξ γ−1f (x∓ ξ) dξ (5a)

(
Dγ±f

)
(x)=def

1
Γ (1− γ )

d
dx

∫
∞

0
ξ−γ f (x∓ ξ) dξ (5b)

(
Dγ±f

)
(x)=def

1
Γ (−γ )

∫
∞

0
ξ−γ−1 (f (x∓ ξ)− f (x)) dξ (5c)

being Γ (γ ) the gamma function, and n the integer part of ρ + 1.
Fourier transform of fractional derivatives, in case 0 < ρ < 1, ([38], p.137) gives

F
(
Iγ±f
)
= (∓iu)−γ F f (6a)

F
(
Dγ±f

)
= F

(
Dγ±f

)
= (∓iu)γ F f (6b)

while inverse Fourier transform gives

F −1
(
Iγ±f
)
= (±ix)−γ F −1f (7a)

F −1
(
Dγ±f

)
= F −1

(
Dγ±f

)
= (±ix)γ F −1f . (7b)

For functions that are Fourier pairs, the previous equations are very useful for calculating the fractional operators in an
easier way with respect to definitions (5). Indeed, by Fourier transform of Eq. (7)(

Iγ±F f
)
(u) =

∫
∞

−∞

(±ix)−γ exp (iux) f (x) dx (8a)

(
Dγ±F f

)
(u) =

(
Dγ±F f

)
(u) =

∫
∞

−∞

(±ix)γ exp (iux) f (x) dx (8b)

one obtains integrals that are not convolutions. Choosing as Fourier pair p(x) and ϕ(u), defined in Eq. (1) and letting u = 0,
it is easy to obtain the generalized form of Eq. (3) from the latter, that can be written as(

Iγ±ϕ
)
(0) =

∫
∞

−∞

(±ix)−γ p (x) dx =
〈
(±iX)−γ

〉
(9a)

(
Dγ±ϕ

)
(0) =

(
Dγ±ϕ

)
(0) =

∫
∞

−∞

(±ix)γ p (x) dx = 〈(±iX)γ 〉 . (9b)

The set of complex moments is a natural generalization of integer moments in the same way as RL fractional differential
operators generalize the classical differential calculus and, coherently Eq. (9b) coincides with Eq. (3), when γ assumes
integer values. The latter equations relate the behavior of the characteristic function and the existence of moments in a
more direct way than those proposed up to now in literature [28]. Moreover, in contrast to the local nature of the derivative
and consequently of the integer moments, the complex moments are non-local like the fractional derivatives.
Whilst Eqs. (9a) and (9b) descend from a proper application of the Fourier properties of the RL operators, the

generalization of Eq. (2) is not trivial; indeed, it relies on a generalized form of Taylor series. In [35] various generalizations
of the Taylor expansion presented in literature have been analyzed, showing that the integral Taylor form based on inverse
Mellin transform, sketched in the book of Samko et al. ([38], pp. 144–5), is the most useful to our scope. The starting point
to find such a generalized Taylor form is to interpret the fractional derivative and integral defined in Eq. (5) as a Mellin
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transform. In what follows we develop our proof just for a characteristic function ϕ(s) for the sake of simplicity, but the
result obtained here ismore general. Moreover, from this point on, wewill use only the definition of theMarchaud fractional
derivative because same concepts follow plainly for the RL definition. Then, letting x = 0, Eq. (5) can be written as

Γ (γ )
(
Iγ±ϕ

)
(0) =M {ϕ (∓ξ) , γ } (10a)

Γ (−γ )
(
Dγ±ϕ

)
(0) =M {ϕ (∓ξ)− ϕ (0) ,−γ } (10b)

whereM{·, γ } is the Mellin transform. Applying the inverse Mellin transform and recalling the condition ϕ(0) = 1, two
representations of the characteristic function

ϕ (∓u) =
1
2π i

∫ ρ+i∞

ρ−i∞
Γ (γ )

(
Iγ±ϕ

)
(0) u−γ dγ (11a)

ϕ (∓u) = 1+
1
2π i

∫ ρ+i∞

ρ−i∞
Γ (−γ )

(
Dγ±ϕ

)
(0) uγ dγ (11b)

hold true, with u > 0 and where integrals are performed along the imaginary axis with fixed real ρ that belongs to the
so-called fundamental strip of the Mellin transform of the function ϕ (u).
The latter equations represent integral forms of the Taylor expansion for the CF, in the sense that from knowledge of the

function
(
Iγ±ϕ

)
(0) or

(
Dγ±ϕ

)
(0) it is possible to evaluate the function ϕ (u) by integration along the imaginary line with real

part ρ ([38], pp. 144–5).
Such a representation gains an appealing touch once Eq. (9) are considered, leading to

ϕ (∓u) =
1
2π i

∫ ρ+i∞

ρ−i∞
Γ (γ )

〈
(±iX)−γ

〉
u−γ dγ (12a)

ϕ (∓u) = 1+
1
2π i

∫ ρ+i∞

ρ−i∞
Γ (−γ ) 〈(±iX)γ 〉 uγ dγ (12b)

with u > 0. The latter equations are the desired integral extensions of Eq. (2). It must be noted that the presence of the
gamma function in the inverse Mellin transform turns into a very amenable numerical treatment, as pointed out in the
following.
The quite simple way we derived the latter relations entails many aspects about analytic functions, due to the complex

nature of the inverse Mellin transform involved. A few remarks are therefore in order: (i) Passing from Eq. (12a) to Eq. (12b)
it does not suffice to change sign because of the presence of the integrand residue in γ = 0. (ii) It is not difficult to show
that the integrand of Eq. (12a) might have, at most, poles for ϕ(−k + i0), k = 0, 1, 2, . . . and, conversely, the integrand in
Eq. (12b) might have, at most, poles for ϕ(k + i0), k = 1, 2, . . .. (iii) The integral in Eq. (12) coincides with the sum of all
the residues, and such a sum can be proved to correspond to the r.h.s. of Eq. (2). Distributions with divergent moments can
therefore be represented as sum of the residues of the integrand in Eq. (12). Such an interesting theoretical aspect cannot be
derived from classical applications of the inverse Mellin transform in probability, because in such works the starting point
is the density and not the characteristic function.
Of course, the fundamental strip depends on the integrability of the CF, following Eq. (10). It has been proved in Ref. [35]

that the strictest fundamental strip associated with every absolute convergent CF, thus including α-stable random variables
and other power-law distributions, is the interval 0 < ρ < 1 if one uses Eq. (12a). Then, in the following, we always assume
such a restriction on ρ.
The density function can be restored from Eq. (12a) by inverse Fourier transform, that explicitly reads

p(x) = F −1 {ϕ (u) ; x} =
1

(2π)2 i

∫ ρ+i∞

ρ−i∞
Γ (γ )

{(
Iγ+ϕ

)
(0)

∫
∞

0
u−γ e−iuxdu+

+
(
Iγ−ϕ

)
(0)

∫ 0

−∞

(−u)−γ e−iuxdu
}
dγ . (13)

Further simplification leads to

p(x) =
1

(2π)2

∫ ρ+i∞

ρ−i∞
Γ (γ )Γ (1− γ )

{
〈(−iX)−γ 〉 (ix)γ−1 + 〈(iX)−γ 〉 (−ix)γ−1

}
dγ . (14)

Eq. (14) represents the density function by the integral form of the Taylor approximation and can be interpreted as the
generalization of Eq. (4). We note that the density is expressed in integral form without the need of partitioning, and no
restriction on the non-negativity of the density is needed. This fact is the consequence of having used the Mellin transform
of the characteristic function. A further simplification is possible by virtue of the Hermitian property of the characteristic
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function, since ϕ (u) = ϕ(−u) where the overbar means conjugation. Evaluation of the CF for u > 0 suffices to restore the
PDF in the form

p (x) =
2

(2π)2
Re
{∫ ρ+i∞

ρ−i∞

π

sin (πγ )
〈(−iX)−γ 〉 (ix)γ−1 dγ

}
(15)

where the property π/ sin (πγ ) = Γ (1− γ )Γ (γ ) has been used. By looking at Eq. (15) one may state that the PDF in
terms of complex moments remains meaningful and computationally useful. Moreover, since the integration is performed
only on the imaginary axis, i.e. the real part of γ remains fixed in the integrand, 〈(−iX)−γ 〉 exists also for distributions for
which 〈X j〉 does not exist, for j integer and greater than a certain value. By comparing Eqs. (12) and (15) a perfect duality
between the representation of the PDF and the CF is evidenced. The integrals in Eqs. (15) and (12a) remain independent of
the choice of ρ within the strip 0 < ρ < 1, because of the holomorphy of the integrand in the fundamental strip.
The appeal of such a representation appears evident when the discretization of the integral is performed. Indeed, it will

be shown in the numerical section that the integral performed on the imaginary axis may be truncated at a certain value η̄,
because the integrand vanishes rapidly, and therefore the discretization of such an integral always produces very accurate
results, in particular for distributions with heavy tails.

3. Extension to multivariate random vectors

In this section, the concepts briefly outlined in the previous section will be derived in case of multivariate random vec-
tors. Multivariate random vectors are fully characterized in probabilistic setting by the joint probability density function,
or by its spectral counterpart, namely the joint characteristic function; alternatively also by joint moments or by joint
cumulants of every order. Let (S,A,P ) be a probability space, X : (S,A) →

(
Rd,Bd

)
, that is XT = (X1, . . . , Xd) de-

notes a d-dimensional random vector. As usual, by denoting xT = (x1, . . . , xd), the joint distribution function of X is de-
fined as F (x) = Pr (X1 < x1, . . . , Xd < xd) and its derivative is called joint probability density function, namely p (x) =
∂dF (x) /∂x1 · · · ∂xd. Let the vector uT = (u1, . . . , ud), with uj ∈ R; the joint characteristic function ϕ (u) is the multidimen-
sional Fourier transform of the joint density, that is

ϕ (u) = F {p (x) ;u} =
∫
∞

−∞

· · ·

∫
∞

−∞

exp
(
iuTx

)
p (x) dx1 . . . dxd. (16)

Analogously to the one-dimensional case, we first define joint complex moments

〈(∓iX1)−γ1 · · · (∓iXd)−γd〉 =
∫
∞

−∞

· · ·

∫
∞

−∞

(∓ix1)−γ1 · · · (∓ixd)−γd p (x) dx1 · · · dxd. (17)

It will be shown that they are multidimensional fractional derivatives of the joint characteristic function evaluated in
zero. To this purpose, let xT= (x1, . . . , xd), γ T = (γ1, . . . , γd) be elements of Rd and f (x) a function of d variables. As
reported in Ref. ([38], p. 462), the Liouville-type fractional integral of order γ with Reγk > 0, k = 1, . . . , d, is defined as

(Iγ±···±f ) (x) =
1

Γ (γ1) · · ·Γ (γd)

∫
∞

0
· · ·

∫
∞

0
ξ
γ1−1
1 · · · ξ

γd−1
d f (x1 ∓ ξ1, . . . , xd ∓ ξd) dξ1 · · · dξd (18)

where the choice of signsmust be coherent between the left and the right hand sides. Let the function f (x) be defined on the
whole space Rd such that

∫
Rd |f (x)| dx1 . . . dxd<∞ and indicate the multidimensional Fourier transform of f (x) as usual in

the form

(F f ) (u) = F {f (x) ;u}=def
∫

Rd
ei(u1 ξ1+···+ud ξd)f (ξ) dξ1 · · · dξd (19)

and the multidimensional Mellin transform as

(Mf ) (γ ) =M {f (x) ; γ }=def
∫
∞

0
· · ·

∫
∞

0
ξ
γ1−1
1 · · · ξ

γd−1
d f (ξ) dξ1 . . . dξd. (20)

Themultidimensional Fourier transform of the Liouville-type fractional integral of f (x) is related to the Fourier transform
of f (x) by the following expressions

F
{(
Iγ±···±f

)
(x) ; u

}
= (∓iu1)−γ1 · · · (∓iud)−γd (F f ) (u) (21a)

F −1
{(
Iγ±···±f

)
(x) ; u

}
= (±iu1)−γ1 · · · (±iud)−γd

(
F −1f

)
(u) (21b)

as reported in Ref. ([38], p. 474). Now,we show that joint complexmoments arise in a naturalway once the fractional integral
of the joint characteristic function is calculated in zero. Indeed, Eq. (21b) specified for the joint characteristic function gives
the relation

F −1
{(
Iγ±···±ϕ

)
(u) ; x

}
= (±ix1)−γ1 · · · (±ixd)−γd F −1 {ϕ (u) ; x} . (22)
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The multidimensional inverse Fourier transform of the joint characteristic function is the joint PDF and therefore, a
multidimensional Fourier transform yields

(
Iγ±···±ϕ

)
(u) =

∫
∞

−∞

· · ·

∫
∞

−∞

(±ix1)−γ1 · · · (±ixd)−γd p (x) exp
(
iuTx

)
dx1 . . . dxd (23)

that, calculated in uT = (0, . . . , 0) gives the fundamental relation

Iγ±···±ϕ (0, . . . , 0) = 〈(±iX1)
−γ1 · · · (±iXd)−γd〉. (24)

With the same reasoning, it is possible to relate the fractional derivatives of the joint characteristic function calculated
in zero in terms of complex moments as

Dγ±···±ϕ (0, . . . , 0) = 〈(±iX1)
γ1 · · · (±iXd)γd〉. (25)

Once these results are achieved, we derive a generalized integral form of the Taylor series. Such an expansion may
be obtained by applying the commutative property of integro-differential operators and by the inverse Mellin transform
also in the multidimensional case. To this aim, we interpret the Liouville-type multidimensional fractional integral as the
multidimensional Mellin transform of the function f (x)

Γ (γ1) · · ·Γ (γd)
(
Iγ±···±f

)
(x1, . . . , xd) =

∫
∞

0
· · ·

∫
∞

0
ξ
γ1−1
1 · · · ξ

γd−1
d f (x1 ∓ ξ1, . . . , xd ∓ ξd) dξ1 · · · dξd, (26)

evaluated at fixed xT = (x1, . . . , xd). Writing Eq. (26) for the joint characteristic function, evaluated in the point uT =
(0, . . . , 0)

Γ (γ1) · · ·Γ (γd)
(
Iγ±···±ϕ

)
(0, . . . , 0) =

∫
∞

0
· · ·

∫
∞

0
uγ1−11 · · · uγd−1d ϕ (∓u1, . . . ,∓ud) du1 · · · dud, (27)

it is easy to recognize that the r.h.s is the Mellin transform, Eq. (20), of the joint characteristic function. Introducing Eq. (24),
the former assumes the relevant form

Γ (γ1) · · ·Γ (γd) 〈(∓iX1)−γ1 · · · (∓iXd)−γd〉 =
∫
∞

0
· · ·

∫
∞

0
uγ1−11 · · · uγd−1d ϕ (∓u1, . . . ,∓ud) du1 · · · dud. (28)

By performing the inverse Mellin transform, the joint characteristic function is rewritten as

ϕ (u1, . . . , ud) =
1

(2π i)d

∫ ρ1+i∞

ρ1−i∞
· · ·

∫ ρd+i∞

ρd−i∞
Γ (γ1) · · ·Γ (γd) 〈(−sign(u1) iX1)−γ1 · · · (−sign(ud) iXd)−γd〉

× |u1|−γ1 · · · |ud|−γd dγ1 · · · dγd. (29)

The integrals are performed by choosing ρ1, . . . , ρd inside the fundamental multidimensional strip. Following [39],
assume that ϕ (u1, . . . , ud) is such that

ϕ (u1, . . . , ud) = O
(
|u1|−q1 , . . . , |ud|−qd

)
for min (|u1| , . . . , |ud|)→∞ (30)

with qj > 0, j = 1, . . . , d. Then, the multidimensional Mellin transform in Eq. (20) is meaningful under the conditions
0 < ρj < qj. Due to the absolute convergence of the joint characteristic function of a true multivariate random variable (see
Ref. [35]) one can select the strictest fundamental strip 0 < ρj < 1 in which Eq. (29) holds true.
As in the one-dimensional case, from the knowledge of the joint characteristic function one can restore the joint PDF by

Fourier inversion. The multidimensional inverse Fourier transform of relation (28) can be performed by subdivision of the
domain Rd in m = 2d subsets in which the variables uT = (u1, . . . , ud) assume all the possible combinations of positive
and negative values. By means of some algebra, the multidimensional inverse Fourier transform of Eq. (29) leads to the
expression of the joint PDF of the random vector X , that reads

p (x1, . . . , xd) =
1

(2π i)d (2π)d

∫ ρ1+i∞

ρ1−i∞
· · ·

∫ ρd+i∞

ρd−i∞

π

sin (πγ1)
· · ·

π

sin (πγd)

×

2∑
k1=1

· · ·

2∑
kd=1

〈(
(−1)k1 iX1

)−γ1
· · ·
(
(−1)kd iXd

)−γd 〉
×
(
(−1)k1+1 i x1

)γ1−1
· · ·
(
(−1)kd+1 i xd

)γd−1 dγ1 · · · dγd, (31)
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where the relation π/ sin
(
πγj

)
= Γ

(
1− γj

)
Γ
(
γj
)
has been used. Eq. (31) can be simplified recalling that the joint char-

acteristic function has symmetry properties. Indeed, ϕ (u) = ϕ (−u) and the joint PDF can be restored by 2d−1 subsets, in
the following form

p (x1, . . . , xd) = 2Re
{

1

(2π i)d (2π)d

∫ ρ1+i∞

ρ1−i∞
· · ·

∫ ρd+i∞

ρd−i∞

π

sin (πγ1)
· · ·

π

sin (πγd)

×

2∑
k2=1

· · ·

2∑
kd=1

〈
(−iX1)−γ1

(
(−1)k2 iX2

)−γ2
· · ·
(
(−1)kd iXd

)−γd 〉
× (ix1)γ1−1

(
(−1)k2+1 ix2

)γ2−1
· · ·
(
(−1)kd+1 ixd

)γd−1 dγ1 · · · dγd}. (32)

We note that in Eq. (32) there occur d − 1 summations and the first variable is not indexed. Concluding, from Eq. (29)
and (32) we can affirm that the function

〈(−iX1)−γ1
(
(−1)k2 iX2

)−γ2
· · ·
(
(−1)kd iXd

)−γd
〉

is able to represent both the joint PDF and the joint characteristic function. In the following section, it will be shown that
discretization produces the desired results. That is, with a finite number of fractional moments, both the joint PDF and the
joint characteristic function can be restored.

4. Applications

In this section it will be shown how the previous results can be used to characterize probability distributions. The integral
forms in the monovariate case, Eqs. (12) and (14), and in the multivariate case, Eqs. (29) and (31), will be discretized in a
suitable form. A remarkable effect of having applied the Mellin transform to the characteristic function rather than to the
density is the presence of the gamma function in the integrand. Indeed, by its fast decay with increasing imaginary part of
the argument, it makes the integral amenable to numerical calculations.

4.1. Numerical treatment of the integral representation by complex moments for random variables

The integrals in Eq. (12)will be evaluated considering a partition of the truncated domain [−η̄, η̄] in 2m (m ∈ N) intervals
of amplitude1η, such that η̄ = m1η. In this way the integrals are approximated as sums evaluated at γk = ρ + ik1η:

ϕ (u) =
1η

2π

2m∑
k=0

Γ (γk−m)
〈
(−iX)−γk−m

〉
u−γk−m (33a)

ϕ (u) = 1+
1η

2π

2m∑
k=0

Γ (−γk−m) 〈(−iX)γk−m〉 uγk−m (33b)

and are valid for u > 0. For u < 0 the characteristic function is restored by the property ϕ (u) = ϕ(−u). As mentioned, the
truncation is feasible because of the presence of the gamma function that vanishes as the imaginary variable η increases.
Consequently, according to Eq. (15), the density can be evaluated by means of the same complex moments in the form

p (x) =
1η

2π
Re

[
2m∑
k=0

〈
(−iX)−γk−m

〉 (ix)γk−m−1
sin (πγk−m)

]
(34)

and, then, the calculation of 2m+ 1 complex moments suffices to have a complete probabilistic description of the random
variable.

4.1.1. Example: Power-law tail distributions
Firstly, we consider an α-stable random variable, with α = 1/2, whose characteristic function is known to be of the

form [40]

ϕ (u) = e−σ
1/2|u|1/2(1−i sign(u))+iµu

where σ and µ are the scale and the location parameters, respectively. This distribution, also known as Lévy–Smirnov
distribution, has moments 〈Xp〉 < ∞ only if p < 1/2. By selecting 1η = .9, ρ = .85, and m = 60 the results plotted
in the bi-logarithmic diagram in Fig. 1 show that in a very wide range the sum well approximates the integral. Complex
moments have been calculated from Eq. (10)〈

(−iX)−γ
〉
=
(
Iγ−ϕ

)
(0) =

1
Γ (γ )

M {ϕ (+u) ; γ }
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Fig. 1. Comparison between the exact (continuous) and the approximated (dotted) density of a 1/2-stable distribution with σ = 1.0, µ = 2; the power-
law trend is plotted in dashed lines.
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Fig. 2. (Left panel) Comparison between the exact (continuous) and the approximated (dotted) characteristic function of a symmetric 3/2-stable
distribution; (right panel) the corresponding density in the log–log diagram contrasted with the power-law trend (dashed lines).

bymeans ofMathematica. It has to be remarked that the results have been computed by applying Eq. (12a), and that ρ = .85
corresponds to complex moments

〈
(−iX)−0.85+iη

〉
which exist for this distribution. As further example, let us consider the

3/2-stable distribution, known as Holtsmark distribution, whose characteristic function is

ϕ (u) = e−σ
3/2|u|3/2 .

In this case, moments exist if p < 3/2 and, in order to apply Eq. (12a), the value of ρ = 0.35, i.e. moments of the type〈
(−iX)−0.35+iη

〉
< ∞ are used. Other parameters in the discretization are 1η = .2 and m = 50 and the results have been

reported in Fig. 2. We stress that the complex moments for both the examples have been calculated from the knowledge of
the characteristic function without explicit use of the density function. This is quite interesting with respect to extensions
of the method to random variables whose density is not known in explicit analytical form, such as α-stable densities.

4.1.2. Statistics from raw data
In this example it is shown that the proposed representation is also useful when dealingwith raw data from experiments.

Let us consider Ns realizations of the random variable X and indicate by Xj, j = 1, . . . ,Ns the jth outcome of X . In order to
evaluate the statistics, complex moments of order γk = ρ + iηk can be calculated from the raw data via〈

(±iX)ρ+iηk
〉
=
1
Ns

Ns∑
j=1

(
±iXj

)ρ+iηk
for every k = 0, . . . , 2m + 1 following the partition of the previous example. Then, applying Eq. (34) the density can be
computed. In Fig. 3 a comparison between the histogram and the density calculated in such a way is shown, demonstrating
excellent convergence. The parameters used in this example are Ns = 10 000, ρ = 0.5,1η = 0.05,m = 50.

4.2. Applications to multivariate random variables

Joint densities and characteristic functions can be represented exactly by the integral forms in Eqs. (29) and (32) inwhich
joint complex moments appear. In this section, the integral is computed by a simple rectangle scheme, in order to present
some applications, without having to find the best numerical treatment of the integral involved. Yet, it has to be noted
that more sophisticated numerical schemes (involving trapezoidal, Gaussian or other local/adaptive rules) of course may
give better results. Hereinafter, the simplest integration scheme is adopted in order to show that with a finite number of
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Fig. 3. Comparison between the density obtained by complex moments and the histogram for 10000 realizations of a random variable.

quantities (the complexmoments) both the joint PDF and the joint characteristic function are verywell approximated. Then,
indicating the integrand in Eqs. (29) and (32) as

Gϕ (u, γ1, . . . , γd) =
1

(2π i)d
Γ (γ1) · · ·Γ (γd)

〈
(−sign(u1) iX1)−γ1 · · · (−sign(ud) iXd)−γd

〉
|u1|−γ1 · · · |ud|−γd

and

Gp (x, γ1, . . . , γd) =
1

(2π i)d (2π)d
π

sin (πγ1)
· · ·

π

sin (πγd)

2∑
k1=1

· · ·

2∑
kd=1

〈(
(−1)k1 iX1

)−γ1
· · ·
(
(−1)kd iXd

)−γd 〉
×
(
(−1)k1+1 i x1

)γ1−1
· · ·
(
(−1)kd+1 i xd

)γd−1
we can more compactly express Eqs. (29) and (32) in the form

ϕ (u) =
∫ ρ1+i∞

ρ1−i∞
· · ·

∫ ρd+i∞

ρd−i∞
Gϕ (u, γ1, . . . , γd) dγ1 · · · dγd

and

p (x) =
∫ ρ1+i∞

ρ1−i∞
· · ·

∫ ρd+i∞

ρd−i∞
Gp (x, γ1, . . . , γd) dγ1 · · · dγd.

The former can now be approximated by the positions: γj = ρj+ iηj, ηj = rj∆j, with−mj ≤ rj ≤ mj,mj ∈ N and∆j ∈ R.
By means of these positions the extremes of integration can be truncated up to

[
−mj∆j,mj∆j

]
. The approximated series

representing the joint statistics reads

ϕ (u) = id
∞∑

r1=−∞

· · ·

∞∑
rd=−∞

Gϕ (u, ρ1 + ir1∆1, . . . , ρd + ird∆d) ∆1 · · ·∆d

p (x) = id
∞∑

r1=−∞

· · ·

∞∑
rd=−∞

Gp (x, ρ1 + ir1∆1, . . . , ρd + ird∆d) ∆1 · · ·∆d.

Moreover, in many cases of interest the presence of the gamma function in the integrand of Eqs. (29) and (32) ensures
that the integrand vanishes and, consequently, the approximated sums can be truncated in the form

ϕ (u) = id
m1∑

r1=−m1

· · ·

md∑
rd=−md

Gϕ (u, ρ1 + ir1∆1, . . . , ρd + ird∆d) ∆1 · · ·∆d

p (x) = id
m1∑

r1=−m1

· · ·

md∑
rd=−md

Gp (x, ρ1 + ir1∆1, . . . , ρd + ird∆d) ∆1 · · ·∆d.

In this way, the accuracy of the results is of course affected by discretization and a truncation error. By means of some
applications we show that the truncated sums are nevertheless very good approximations, computing a finite number of
complex moments.
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Fig. 4. Comparison between the exact (continuous) and the approximated (dashed) real part of the joint characteristic function (left panel) and the
imaginary part of the joint characteristic function (right panel) of a bivariate Cauchy distribution.

4.2.1. Bivariate Cauchy random vector
In this example we deal with the bivariate Cauchy distribution, that is an α-stable distribution with α = 1. Then, it has

power-law tails and, as pointed out already in the introduction it has not integer moments of any order. The expression of
its joint PDF is in general

p (x) =
c det (6)−1/2(

1+ (x− µ)T 6−1 (x− µ)
)3/2

while its joint characteristic function has the form

ϕ (u) = exp
(
−uT6u

)1/2
+ iuTµ

and c = π−3/2Γ (3/2). The matrix 6 and the vector µ have the meaning of scale matrix and location vector, in some
sense analogous to the covariance matrix and the mean vector. For the application of the fractional moments approach, we
consider in this example the parameters

Σ =

(
1 0.2
0.2 1

)
; µ =

(
1
1

)
then, as the location vector is not zero, we will expect a density with the maximum in the point x1 = 1 and x2 = 1. Con-
sequently, due to the condition µ 6= 0, the joint characteristic function of such random vector is a complex function as
plainly descends from the definition. Then, Eqs. (29) and (32) are discretized by choosing the steps∆1 = ∆2 = 0.3, and the
integration is performed in the fundamental strip with ρ1 = ρ2 = 0.5. By usingm = 20 fractional moments we show that
very good numerical convergence is obtained. Indeed, in Fig. 4 we first give the contour plots of the real and the imaginary
part of the complex characteristic function where the dashed line is the approximation proposed. Without performing any
further Fourier transform but just applying the discrete form of Eq. (32), with the same 20 fractional moments the joint PDF
is calculated and plotted in Fig. 5 showing a good numerical convergence in the whole domain.

5. Conclusions

In this paper, we provide new insights into the problem of the statistical representation of random variables by means of
the Mellin transform and fractional calculus. We define a class of complex moments (comprehending fractional moments)
that can represent every kind of joint PDF and joint characteristic function, including joint characteristic functions that
are non-differentiable in zero, and densities with heavy tails, like the bivariate Cauchy distribution or other power-law
distributions. Comparison with classical applications of inverse Mellin transform shows that starting from the Mellin
transform of the characteristic function and exploiting its Hermitian nature an easy and efficient representation of the
statistics of random variables and vectors is achieved. Further, the complex moments introduced represent both the joint
PDF and the joint CF.
The perspective presented in this papermight open, in the authors’ opinion, a new touch on themoment problem, that is,

under which conditions the knowledge of moments suffices to reconstruct the underlying density, to hierarchy of moments
and related issues.
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Fig. 5. Comparison between the exact (continuous) and the approximated (dashed) joint PDF of a bivariate Cauchy distribution with a non-zero location.
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