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Intermittent search processes switch between local Brownian
search events and ballistic relocation phases. We demonstrate ana-
lytically and numerically in one dimension that when relocation
times are Lévy distributed, resulting in a Lévy walk dynamics, the
search process significantly outperforms the previously investi-
gated case of exponentially distributed relocation times: The result-
ing Lévy walks reduce oversampling and thus further optimize the
intermittent search strategy in the critical situation of rare targets.
We also show that a searching agent that uses the Lévy strategy
is much less sensitive to the target density, which would require
considerably less adaptation by the searcher.

random processes | optimization | Lévy walk | movement ecology

R andom search processes occur in many areas, from chemical
reactions of diffusing reactants (1) to the foraging behavior

of bacteria and animals (2, 3). Of general importance is the search
efficiency. Brownian search in one and two dimensions involves
frequent returns to an area, leading to oversampling. Higher effi-
ciency, can be achieved, for instance, by facilitated diffusion in
gene regulation (4) or by controlled motion in foraging (2, 3).
From theoretical and data analysis Lévy strategies, in which the
searching agent performs excursions whose length is drawn from
distributions with a heavy tail

λ(x) � |x|−1−α , [1]

for 0 < α < 2 were shown to be advantageous (5–16); occasional
long excursions assist in exploring previously unvisited areas and
significantly reduce oversampling.

As an alternative to Lévy search, intermittent strategies have
been introduced to improve the efficiency of diffusive search
(17–21). Intermittent search requires that the searcher occasion-
ally shifts focus from the search and concentrates on fast relo-
cation. The relocation phase implies that the searcher is wast-
ing time in the short run because the target cannot be spotted
during it. However, the overall search efficiency is improved
by introducing the searcher to previously unexplored areas
(17–21).

In refs. 18 and 20 relocation events were assumed to occur in
a random direction for exponentially distributed time spans, giv-
ing rise to a Markovian process. We show here analytically and
numerically in one dimension that this is only a partial solution
to oversampling, as eventually the central limit theorem (CLT)
reduces the process to a Brownian random walk with jumps on
the scale of vτ2, where τ2 is the typical time spent in a reloca-
tion event. In practice, revisits can be reduced by adjusting the
average time spent in search and relocation phases to the density
of targets. Lévy strategies, on the other hand, fundamentally cir-
cumvent the CLT, and we here demonstrate a twofold advantage
of them over the exponential distribution: Lévy walk intermittent
processes find the target faster than exponential strategies in the
critical case of rare targets, and their performance is much less
dependent on adapting to the target density.

Intermittent Search with Lévy Relocations
Generalizing the model from ref. 20, we consider two phases:
In the search phase the searcher scans for the target by diffu-
sive motion with diffusivity D. With probability per time τ−1

1 the
searcher switches to the relocation phase, during which it moves
ballistically with velocity v in a random direction (20). The reloca-
tion time is drawn from the waiting time distribution ψ(t), which
will be considered to be exponential or Lévy stable. The purpose
of relocations is to move as quickly as possible away from the area
that has just been searched, and thus the searcher is not scanning
for the target in this phase. To compare with previous results we
take a closed cell approach: the search is performed on an interval
of length L with periodic boundary conditions, corresponding to
regularly spaced targets with density 1/L. The model can be for-
mulated as an equation for the probability density P(x, t) for the
position x of the searcher in the search phase:

∂P
∂t

= 1
τ1

∫ L/2

−L/2
dx′

∫ ∞

0
dt′W (x − x′, t − t′)P(x′, t′)

− 1
τ1

P(x, t) + D
∂2P
∂x2 − pfa(t)δ(x). [2]

The role of the last term on the right-hand side is to remove
the particle when it arrives at the target placed at x = 0. The
density pfa(t) thus represents the first arrival time at the target,
which is determined implicitly by the absorbing boundary condi-
tion P(x = 0, t) = 0. The term proportional to the diffusivity D
describes the local Brownian motion in the search phase. The term
−τ−1

1 P(x, t) removes the searcher from location x with rate τ−1
1 .

The searcher is then relocated according to the integral expres-
sion in which the kernel W (x, t) is the joint probability density of
making a relocation of length x during a time t. It is defined by

W (x, t) = ψ(t)
2

∞∑
n=−∞

δ(|x + nL| − vt). [3a]

Here the δ-coupling enforces that the distance traveled in time t
is vt, and the sum over n renders W (x, t) L-periodic in x. ψ(t) is
related to the spatial distribution of the relocations λ(x) by

ψ(t) = 2vλ(vt). [3b]

The jump length distribution λ(x) is assumed to be symmetric
around x = 0 (no orientational memory).

The search efficiency is quantified by the mean search time

〈t〉 =
∫ ∞

0
dt tpfa(t). [4]
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To obtain 〈t〉 we Fourier expand

P(n, t) =
∫ L/2

−L/2
dx eiknxP(x, t), [5]

where n is an integer with corresponding wavenumber kn =
2πn/L, and Laplace transform, where

P(n, u) =
∫ ∞

0
dt e−utP(n, t). [6]

We find

uP(n, u) − δn,0 = 1
τ1

W (n, u)P(n, u) − 1
τ1

P(n, u)

− Dk2
nP(n, u) − pfa(u). [7]

The initial distribution is uniform, P(x, t = 0) = 1/L, because
the searcher initially has no information on the target position.
Isolating P(n, u), summing over n (note that

∑
n P(n, u) = P(x =

0, u) = 0), we find for pfa(u),

pfa(u) =
{ ∞∑

n=−∞

u + [1 − ψ(u)]/τ1

u + Dk2
n + [1 − W (n, u)]/τ1

}−1

. [8]

In Laplace space the mean search time 〈t〉 yields from expansion
of pfa at small u because pfa(u) ∼ 1 −〈t〉u + . . . . From the average
time τ2 spent in a single relocation event (ψ(u) ∼ 1 − τ2u + . . . ),
one obtains

〈t〉 =
∞∑

n=1

2(τ1 + τ2)
Dτ1k2

n + 1 − λ(kn)
. [9a]

Here,

λ(kn) = W (n, u = 0) =
∫ ∞

−∞
dx eiknxλ(x) [9b]

is the Fourier transform of the relocation length distribution
λ(k) = ∫ ∞

−∞ dx eikxλ(x), at the discrete wavenumbers kn = 2πn/L.
We now use Eq. 9a to determine the search efficiency of (i) Lévy
and (ii) exponentially distributed relocations:

(i) For Lévy distributed relocations we use the symmetric Lévy
stable law with characteristic function (22)

λ(k) = exp{−σα|k|α}, σ = πvτ2

[2	(1 − 1/α)] . [10]

From this closed expression the asymptotic form 1 follows. The
index α is restricted to 1 < α < 2 so that the mean relocation time
τ2 is finite. Fig. 1 depicts trajectories for cases of exponential and
Lévy relocations, distinguishing the Lévy case with its occasional
long relocations.

We introduce three approximations valid for large L:
(a) Assume that vτ2 � √

Dτ1, i.e., that the mean relocation
distance is much longer than the average distance scanned in a
typical search phase. We will see that this is self-consistent with
the obtained optimal values of τ1 and τ2 that have the same
L-scaling for large L. This assumption means that Dτ1k2

n and λ(kn)
are to a good approximation nonzero at different n, and we expand

1
Dτ1k2

n + 1 − λ(kn)
∼ 1

Dτ1k2
n + 1

+ 1
1 − λ(kn)

− 1. [11]

(b) Assuming that the search range
√

Dτ1 is much smaller than
L, we replace the sum over the first term on the right-hand side of
Eq. 11 by an integral, yielding

∞∑
n=1

1
Dτ1k2

n + 1
∼

∫ ∞

0

1
Dτ1k2

n + 1
dn = L

4
√

Dτ1
. [12]

Fig. 1. x–t diagram with exponential and Lévy relocations, with τ1 = 37,
τ2 = 200, D = 1, v = 0.1, and L = ∞.

(c) Because λ(kn) ∼ 1 − σα|kn|α at small values of kn (kn → 0
at n = 1 in the limit of large L) we approximate the last two terms
of Eq. 11. Namely, the contribution from the singularity at small
n dominates the sum,

∞∑
n=1

[
1

1 − λ(kn)
− 1

]
∼

(
L

2πσ

)α

ζ (α). [13]

Here ζ (α) = ∑∞
n=1 n−α is the Riemann ζ function.

Collecting a to c, Eq. 9a is approximated by

〈t〉 ∼ 2(τ1 + τ2)
[

L
4
√

Dτ1
+

(
L

2πσ

)α

ζ (α)
]

. [14]

For honest comparison between Lévy and exponential strate-
gies, we determine the respective optimal τ1 and τ2. Solving
∂〈t〉/∂τ1 = 0 and ∂〈t〉/∂τ2 = 0 simultaneously, we obtain from
Eq. 14 that at large L

τ1 ∼ (b/aα)1/(α−1/2), τ2 ∼ (b/
√

a)1/(α−1/2), [15]

where (using � ≡ √
1 + 4(α − 1)α)

a = (1 + �)/(2[α − 1]), [16a]

b = 2
√

D[2α + � − 3]ζ (α)Lα−1
[

	(1 − α−1)
π2v

]α

[16b]

such that the optimal τi scale with L as L(α−1)/(α−1/2). According to
Eq. 14, 〈t〉 will then scale as L(3α−2)/(2α−1), implying that for large
L the more efficient search will occur for α close to 1. However,
the prefactor to the L-scaling diverges as α → 1, so the optimal
choice of α will be somewhat larger than 1 for any finite L, as
demonstrated in Fig. 2. The inset of Fig. 2 shows the validity of
the approximate 〈t〉 for optimal τi.

(ii) For exponentially distributed relocation with

ψ(t) = τ−1
2 e−t/τ2 , [17]

approximations a to c also apply, with σ = vτ2. The corresponding
results for 〈t〉 and optimal τi obtain by replacing 	(1−1/α) by π/2
and taking α = 2:

〈t〉 ∼ τ1 + τ2

12

[
6L√
Dτ1

+
(

L
vτ2

)2
]

, [18]

τ1 ∼ (D/[18v4])1/3L2/3/2, τ2 ∼ 2τ1. [19]
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Fig. 2. Solid lines, optimal α and ratio η of search times for optimal α vs.
exponential strategy, as function of L. Dashed lines, ratio η = 〈t〉L,τi (L)/〈t〉L,τi (L0)

of optimal vs. fixed τi search times as a function of L for exponential and
α = 1.25 Lévy strategies (L0 = 5 × 104). The values are calculated using
asymptotic Eqs. 14 and 18, and corresponding optimal τ1 and τ2 (allowing the
optimal α to range between 1 and 2). (Inset) Convergence of the asymptotic
〈t〉a (Eqs. 14 and 18) toward the exact 〈t〉e (Eq. 9a) with L for asymptotically
optimal τi . D = 1, v = 1 for all curves.

These expressions agree with those of ref. 20.1

Performance of Lévy Intermittent Search
The search time 〈t〉 for exponential strategies scales as L4/3 for
optimal τ1 and τ2, proving that Lévy strategies with 1 < α < 2
are increasingly more efficient than the exponential strategies for
decreasing target density. In Fig. 3 we show 〈t〉 as function of
relocation time τ2.

An additional advantage of Lévy strategies is due the scaling
τi � L(α−1)/(α−1/2) of the optimal τi: for α close to unity the opti-
mal strategy becomes insensitive to the target density. This means
that it is less important for the searcher to have advance knowledge
of the density of targets L−1 if it follows a small α Lévy strategy,
because it can choose τi that are almost optimal over a broad range
of densities. This point is illustrated in Fig. 2.

To understand better the α-dependence of the Lévy strategy
we study the first arrival density pfa(t) for large L, where again
L � vτ2 � √

Dτ1. We consider times much longer than one
relocation–search cycle such that ψ(u) ∼ 1−τ2u+. . . , and rewrite
Eq. 8 as

pfa(u) ∼ 1
u

τ1

τ1 + τ2

1
W0(u)

1
L

, [20]

where we have introduced the term

W0(u) = 1
L

∞∑
n=−∞

1
u + Dk2

n + [1 − W (n, u)]/τ1
. [21]

The last expression can be simplified by following similar approx-
imations as for 〈t〉 before. The separation of length scales leading
to approximation a allows us to write

W0(u) ∼ τ1

L

∞∑
n=−∞

[
1

Dτ1k2
n + 1

+ 1
τ1u + 1 − W (n, u)

− 1
]

. [22]

1 Note that there is a typographical error in the expression for 〈t〉 in equation 5 of ref. 20:
coth (1/[2αL]) should be coth(αL/2).

For the last two terms in Eq. 22 the contributions at small n again
dominate the sum (approximation c); expanding W (n, u) at small
kn and u produces W (n, u) ∼ 1 − σα|kn|α − τ2u. Collecting the
results, we find

W0(u) ∼ τ1

L

∞∑
n=−∞

[
1

Dτ1k2
n + 1

+ 1
(τ1 + τ2)u + σα|kn|α

]
. [23]

We focus on times short enough such that the L-periodicity of
the problem does not yet play a role, so that Laplace space
u � (σα|kn|α)/(τ1 +τ2) at n = 1. In this approximation we replace
the sum L−1 ∑∞

n=−∞ by the integral
∫ ∞
−∞ dkn/(2π), obtaining

W0(u) ∼ 1

2
√

Dτ−1
1

+ τ1/[α sin(π/α)σ ]
[u(τ1 + τ2)]1−1/α

. [24]

For shorter times (corresponding to larger u) we discard the sub-
dominant second term in Eq. 24. Laplace inversion of Eq. 20 then
produces

pfa(t) ∼ 2
√

Dτ1/[L(τ1 + τ2)]. [25]

At later times (smaller u) the second term in Eq. 24 dominates,
and the plateau 25 turns into

pfa(t) ∼ α

2

[
sin

(π

α

)]2 vτ2

L(τ1 + τ2)1/α t1−1/α
. [26]

The crossover between these two regimes occurs when the values
of expressions 25 and 26 become equal, i.e., at

t ∼ (τ1 + τ2){α[sin(π/α)]2vτ2/[4
√

Dτ1]}α/(α−1). [27]

Discussion
In Eq. 25, 2

√
Dτ1 is the average length scanned in a search event.

Division by L yields the probability to find the target during this
phase, and 1/(τ1 + τ2) is the rate at which the search phase itself
occurs. A crucial part in this interpretation is that the probability of
searching in a previously scanned area is negligible. This assump-
tion will break down at some point because of the searcher’s lack
of orientational memory. The searcher will then begin to revisit
explored regions with a reduced probability of finding the target

Fig. 3. Mean search time for Lévy (α = 1.35) and exponential strategies as
function of τ2 at asymptotically optimal τ1 (τ1 = 37.2 for Lévy and τ1 = 411
for exponential). We chose L = 105, D = 1, v = 1. Simulations versus exact
(Eq. 9a) and asymptotic (Eqs. 14 and 18) theory are shown.
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Fig. 4. First arrival density versus time. The crosses are simulation data,
and the straight lines are the intermediate regimes of Eq. 25 and Eq. 26.
Parameters are τ1 = 35, τ2 = 50, L = 104, α = 1.75, v = 1, and D = 1.

as a result. This causes the crossover to the power-law behavior
26. Fig. 4 shows the turnover from plateau to inverse power-law
of the first arrival. At even longer times, finite size effects cause a
turnover to an exponential decay.

From Eq. 26 the advantage of having α close to unity at large L
becomes evident: the presence of rare but long relocation events
reduces the risk of rescanning already visited areas, which will
be important for large L. However, the downside to choosing an
α-value too close to 1 is that an increased amount of very long
relocations implies an increased amount of very short ones too,
because the average distance is fixed by vτ2 (24). This means that
the crossover to the less favorable situation described by Eq. 26
happens earlier, so that larger α becomes more efficient for shorter
search times relevant at smaller L.

Intermittent strategies are beneficial when purely diffusive
search would slow down over time due to the increasing returns
to previously scanned areas (oversampling). Choosing an expo-
nential strategy for relocations, however, only partially solves this
problem: At times t � τ2, the CLT governs, leading to oversam-
pling on a typical scale vτ2. Conversely, Lévy-intermittent strate-
gies are not bound to the CLT, rendering them a more amenable
solution to reduce oversampling and therefore advantageous in
the search for rare targets. Although less pronounced, the prob-
lem of oversampling still occurs in two-dimensional search studied
in ref. 19. Lévy strategies are expected to improve the search effi-
ciency in this case, as well; however, as to what extent remains to
be established quantitatively.

On the basis of our results we advocate that intermittent strate-
gies should not be thought of as alternatives to Lévy strategies. In
contrast, the synergistic combination of intermittent search and
Lévy relocation strategies turns out to be beneficial. Moreover,
a given Lévy walk intermittent search strategy (with fixed τi) is
almost optimal over a wide range of sparse target densities, which

might be a strategic advantage for creatures that have limited
abilities to adjust their search parameters.

We note, however, that the small scaling exponent of 〈t〉 with L
for the Lévy strategy is not a result of the Lévy part of the strat-
egy alone. To explain what we mean by this we will define the pure
Lévy strategy as a strategy where the searcher only quickly tests his
immediate neighborhood for the target at the end of each reloca-
tion. Thus we assume that τ1 has a small finite value (alternatively
the target could have a small finite size and τ1 = 0) and only con-
sider optimization of the strategy with respect to τ2. Doing this, we
find from our analytic asymptotic result that the optimal τ2 scales
with L as L1−1/α and that this results in a scaling 〈t〉 � L2−1/α , a
scaling that increases faster with L for any α > 1 compared with
the result where τ1 is also optimized. And it is only an improvement
over the optimized exponential strategy when α < 3/2. Without
any optimization the Lévy strategy would result in 〈t〉 � Lα , a
scaling that that is still better than for the optimized exponential
strategy when α < 4/3.

A remark on the recent discussion about the empirical observa-
tion of Lévy distributions of relocation lengths in animal foraging is
in order. Thus, while the original publications provided evidence
of long-tailed relocation lengths in accordance with theoretical
considerations (6–8), a reanalysis of the data reveals that the orig-
inal data contained few extreme events for the flight times, after
removal of which the data no longer unequivocally allow an inter-
pretation as Lévy pattern (23). In that paper also a few other
previous claims of Lévy foraging patterns were invalidated. This
has caused some uncertainty about the general relevance of Lévy
search patterns in animal foraging (24). Among the recent criti-
cisms of ref. 23 we refer to the consideration of finite size effects
of real trajectories in ref. 25 that were shown to reestablish the
validity of a Lévy-based search mechanism for the albatross flight.
It is our belief that Lévy search models show a distinct advantage
over strategies governed by the central limit theorem. However,
it will require considerably larger data sets to be able to tell for
sure whether typically animals use a specific search strategy. The
value of this and similar theoretical studies is to provide a frame-
work for the analysis of data that are being collected now or in
the future. The robustness of the search efficiency of Lévy strate-
gies to changing target densities, as demonstrated here, appears
to be a key concept in the discussion of search mechanisms, and
potentially an important evolutionary advantage.

Our analysis relies on the assumption that each relocation is
pointed toward a random direction. This will be a good model
for “nonintelligent” search, similar to bacterial movement in the
absence of chemical or temperature gradients, during which tum-
bling motion changes with directed motion (2). Intelligent crea-
tures will improve the target search by partial or complete memory,
avoiding previously visited locations. It will be interesting to study
in more detail models with search memory.
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