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Abstract

We investigate the physical basis and properties of Lévy flights (LFs), Markovian random walks with a long-tailed
density of jump lengths, kðnÞ � jnj�1�a, with 0 < a < 2. In particular, we show that non-trivial boundary conditions
need to be carefully posed, and that the method of images fails due to the non-locality of LFs. We discuss the behaviour
of LFs in external potentials, demonstrating the existence of multimodal solutions whose maxima do not coincide with
the potential minimum. The Kramers escape of LFs is investigated, and the physical nature of the a priori diverging
kinetic energy of an LF is addressed.
� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

For sums of independent, identically distributed random variables with proper normalization to the sample size, the
generalized central limit theorem guarantees the convergence of the associated probability density to a Lévy stable den-
sity (LSD) even though the variance of these random variables diverges [1–4]. Well-known examples for LSDs are the
one-sided (defined for x P 0) Lévy–Smirnov distribution

f1=2;�1=2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi

1

4px3

r
exp � 1

4x

� �
; ð1Þ

related to the first passage time density of a Gaussian random walk process of passing the origin (see below), and the
Cauchy (or Lorentz) distribution

f1;0ðxÞ ¼
1

pð12 þ x2Þ
: ð2Þ

In general, an LSD is defined through its characteristic function of the probability density f ðxÞ

uðzÞ �Fff ðxÞg ¼
Z 1

�1
fa;bðxÞeikx dx ð3Þ
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where

log uðzÞ ¼ �jzja exp i
pb
2

signðzÞ
� �

; ð4Þ

for a 6¼ 1. Here, the skewness (or asymmetry) parameter b is restricted to the following region:

jbj 6
a; if 0 < a < 1

2� a; if 1 < a < 2:

�
ð5Þ

For b ¼ 0, the corresponding LSD is symmetric around x ¼ 0, while for b ¼ �a and 0 < a < 1, it is one-sided. In gen-
eral, an LSD follows the power-law asymptotic behaviour

fa;bðxÞ �
Aa;b

jxj1þa ; a < 2; ð6Þ

with Aa;b being a constant, such that for all LSDs with a < 2 the variance diverges

hx2i ¼ 1: ð7Þ

Conversely, all fractional moments hjxjdi <1 for all 0 < d < a 6 2. From above definitions it is obvious that the LSD
f2;0 corresponds to the Gaussian normal distribution

f2;0ðxÞ ¼
ffiffiffiffiffiffi
1

4p

r
exp � 1

4
x2

� �
ð8Þ

possessing finite moments of any order. In this limit, the generalized central limit theorem coincides with the more tra-
ditional central limit theorem.

Random processes whose spatial coordinate x or clock time t are distributed according to an LSD exhibit anomalies,
that is, no longer follow the laws of Brownian motion. Consider a continuous time random walk process defined in
terms of the jump length and waiting time distributions kðnÞ and wðsÞ [5]. Each jump event of this random walk, that
is, is characterized by a jump length n drawn from the distribution k, and the time s between two jump events is dis-
tributed according to w. (Note that an individual jump is supposed to occur spontaneously.) In absence of an external
bias, continuous time random walk theory connects kðnÞ and wðsÞ with the probability distribution P ðx; tÞdx to find the
random walker at a position in the interval ðx; xþ dxÞ at time t. In Fourier–Laplace space, P ðk; uÞ �FfLfPðx; tÞ;
t! ug; x! kg, this relation reads [6]

P ðk; uÞ ¼ 1� wðuÞ
u

1

1� kðkÞwðuÞ ; ð9Þ

where Lff ðtÞg �
R1

0 expð�utÞf ðtÞdt. We here neglect potential complications due to ageing effects. The following cases
can be distinguished:

(i) kðnÞ is Gaussian with variance r2 and wðsÞ ¼ dðs� s0Þ. Then, to leading order in k2 and u, respectively, one
obtains kðkÞ ’ 1� r2k2 and wðuÞ ’ 1� us0. From relation (9) one recovers the Gaussian probability density
P ðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð4pKtÞ

p
expf�x2=ð4KtÞg with diffusion constant K ¼ r2=s0. The corresponding mean squared dis-

placement grows linearly with time:

hx2ðtÞi ¼ 2Kt: ð10Þ

This case corresponds to the continuum limit of regular Brownian motion. Note that here and in the following, we re-
strict the discussion to one dimension.

(ii) Assume kðnÞ still to be Gaussian, while for the waiting time distribution wðsÞ we choose a one-sided LSD with
stable index 0 < a < 1. Consequently, wðuÞ ’ 1� ðus0Þa, and the characteristic waiting time

R1
0

wðsÞsds diverges.
Due to this lack of a time scale separating microscopic (single jump events) and macroscopic (on the level of
P ðx; tÞ) scales, P ðx; tÞ is no more Gaussian, but given by a more complex H-function [7–9]. In Fourier space, how-
ever, one finds the quite simple analytical form [8]

P ðk; tÞ ¼ Eað�Kak2taÞ ¼
X1

0

ðKak2taÞn

Cð1þ anÞ ð11Þ
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in terms of the Mittag–Leffler function. This generalized relaxation function of the Fourier modes turns from an initial
stretched exponential (KWW) behaviour Pðk; tÞ � 1� Kak2ta=Cð1þ aÞ � expf�Kak2ta=Cð1þ aÞg to a terminal power-
law behaviour P ðk; tÞ � ðKak2taCð1� aÞÞ�1 [8]. In the limit a! 1, it reduces to the traditional exponential
P ðk; tÞ ¼ expð�Kk2tÞ with finite characteristic relaxation time. Also the mean squared displacement changes from its
linear to the power-law time dependence

hx2ðtÞi ¼ 2Kata; ð12Þ

with Ka ¼ r2=sa
0. This is the case of subdiffusion. We note that in x; t space the dynamical equation is the fractional dif-

fusion equation [7]. In the presence of an external potential, it generalizes to the time-fractional Fokker–Planck equa-
tion [10,8,9].

(iii) Finally, take wðsÞ ¼ dðs� s0Þ sharply peaked, but kðnÞ of Lévy stable form with index 0 < a < 2. The resulting
process is Markovian, but with diverging variance. It can be shown that the fractional moments scale like [11]

hjxðtÞjdi / ðKatÞd=a; ð13Þ

were Ka ¼ ra=s0. From Eq. (9) one can immediately obtain the Fourier image of the associated probability den-
sity function,

Pðk; tÞ ¼ expf�Kajkjatg: ð14Þ

From Eq. (4) this is but a symmetric LSD with stable index a, and this type of random walk process is most aptly
coined a Lévy flight. A Lévy flight manifestly has regular exponential mode relaxation and is in fact Markovian (see
below). However, the modes in position space are no more sharply localized like in the Gaussian or subdiffusive case.
Instead, individual modes bear the hallmark of an LSD, that is, the diverging variance. We will see below how the pres-
ence of steeper than harmonic external potentials cause a finite variance of the Lévy flight, although a power-law form
of the probability density remains.

In the remainder of this paper, we deal with the physical and mathematical properties of Lévy flights in the presence
of external force fields. While mostly we will be concerned with the overdamped case, in the last section we will address
the dynamics in velocity space in the presence of Lévy noise, in particular, the question of the diverging variance of Lévy
flights.

2. Underlying random walk process

To derive the dynamic equation of a Lévy flight in the presence of an external force field F ðxÞ ¼ �dV ðxÞ=dx, we pur-
sue two different routes. One starts with a generalized version of the continuous time random walk, compare Ref. [12]
for details.

To include the local asymmetry of the jump length distribution due to the force field F ðxÞ, we introduce [12,13] the
generalized transfer kernel Kðx; x0Þ ¼ kðx� x0Þ½Aðx0ÞHðx� x0Þ þ Bðx0ÞHðx0 � xÞ� (and therefore Kðx; x0Þ ¼ Kðx0; x� x0Þ).
As in standard random walk theory (compare [14]), the coefficients AðxÞ and BðxÞ define the local asymmetry for jump-
ing left and right, depending on the value of F ðxÞ. Here, HðxÞ is the Heaviside jump function. With the normalizationR

Kðx0;DÞdD ¼ 1, the fractional Fokker–Planck equation (FFPE) ensues [12]:

o

ot
P ðx; tÞ ¼ � o

ox
F ðxÞ
mg
þ Ka

oa

ojxja
� �

P ðx; tÞ: ð15Þ

Remarkably, the presence of the Lévy stable kðnÞ only affects the diffusion term, while the drift term remains unchanged
[15,12]. The fractional spatial derivative represents an integrodifferential operator defined through

o
a

ojxja P ðx; tÞ ¼ �1

2 cosðpa=2ÞCð2� aÞ
o

2

ox2

Z 1

�1

P ðx0; tÞ
jx� x0ja�1

; ð16Þ

for 1 < a < 2, and a similar form for 0 < a < 1 [16–18]. In Fourier space, for all 0 < a 6 2 the simple relation

F
oa

ojxja Pðx; tÞ
� �

¼ �jkjaP ðk; tÞ ð17Þ

holds. In the Gaussian limit a ¼ 2, all relations above reduce to the familiar second-order derivatives in x and thus the
corresponding Pðx; tÞ is governed by the standard Fokker–Planck equation.

R. Metzler et al. / Chaos, Solitons and Fractals 34 (2007) 129–142 131
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The FFPE (15) can also be derived from the Langevin equation [15,19,16]

dxðtÞ
dt
¼ � 1

mc
dV ðxÞ

dx
þ naðtÞ; ð18Þ

driven by white Lévy stable noise naðtÞ, defined through LðDtÞ ¼
R tþDt

t naðt0Þdt0 being a symmetric LSD of index a with
characteristic function pðk;DtÞ ¼ expð�KajkjaDtÞ for 0 < a 6 2. As with standard Langevin equations, Ka denotes the
noise strength, m is the mass of the diffusing (test) particle, and c is the friction constant characterizing the dissipative
interaction with the bath of surrounding particles.

A subtle point about the FFPE (15) is that it does not uniquely define the underlying trajectory [20]; however, start-
ing from our definition of the process in terms of the stable jump length distribution kðnÞ � jxj�1�a, or its generalized
pendant Kðx; x0Þ, the FFPE (15) truly represents a Lévy flight in the presence of the force F ðxÞ. This poses certain dif-
ficulties when non-trivial boundary conditions are involved, as shown below.

3. Propagator and symmetries

In absence of an external force, F ðxÞ ¼ 0, the exact solution of the FFPE is readily obtained as the LSD
Pðk; tÞ ¼ expð�KajkjatÞ in Fourier space. Back-transformed to position space, an analytical solution is given in terms
of the Fox H-function [8,21,19]

P ðx; tÞ ¼ 1

ajxjH
1;1
2;2

jxj
ðKatÞ1=a

ð1; 1=aÞ; ð1; 1=2Þ
ð1; 1Þ; ð1; 1=2Þ

����
" #

; ð19Þ

from which the series expansion

P ðx; tÞ ¼ 1

aðKatÞ1=a
X1
m¼0

Cð½1þ m�=aÞ
Cð½1þ m�=2ÞCð1� ½1þ m�=2Þ

ð�1Þm

m!

jxj
ðKatÞ1=a

 !m

ð20Þ

derives. For a ¼ 1, the propagator reduces to the Cauchy LSD

P ðx; tÞ ¼ 1

pðK1t þ x2=½K1t�Þ : ð21Þ

We plot the time evolution of P ðx; tÞ for the Cauchy case a ¼ 1 in Fig. 1 in comparison to the limiting Gaussian case
a ¼ 2.

Due to the point symmetry of the FFPE (15) for F ðxÞ ¼ 0, the propagator Pðx; tÞ is invariant under change of sign,
and it is monomodal, i.e., it has its global maximum at x ¼ 0, the point where the initial distribution P ðx; 0Þ ¼ dðxÞ was
launched at t ¼ 0. The latter property is lost in the case of strongly confined Lévy flights discussed below. Due to their
Markovian character, Lévy flights also possess a Galilei invariance [22,8]. Thus, under the influence of a constant force

 0.01

 0.1

 1

-3 -2 -1  0  1  2  3

P
(x

,t)

x

Cauchy, t=0.1
Cauchy, t=0.5
Gauss, t=0.1
Gauss, t=0.5

Fig. 1. Cauchy distribution (a ¼ 1) for two times in comparison to the Gaussian (a ¼ 2). We chose K1 ¼ K2 ¼ 1. Note that the Cauchy
distribution is narrower at the origin, and after crossing the Gaussian falls off in the much slower power-law fashion.
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field F ðxÞ ¼ F 0, the solution of the FFPE can be expressed in terms of the force-free solution by introducing the wave
variable x� F 0t, to obtain

P F 0
ðx; tÞ ¼ P 0 x� F 0t

mc
; t

� �
: ð22Þ

This result follows from the FFPE (15), that in the Fourier domain becomes [19]

o

ot
P ðk; tÞ ¼ �ik

F 0

mc
� Kajkja

� �
Pðk; tÞ; ð23Þ

with solution

Pðk; tÞ ¼ exp � ik
F 0

mc
þ Kajkja

� 	
t

� �
: ð24Þ

By the translation theorem of the Fourier transform, Eq. (22) yields. We show an example of the drift superimposed to
the dispersional spreading of the propagator in Fig. 2.

4. Presence of external potentials

4.1. Harmonic potential

In an harmonic potential V ðxÞ ¼ 1
2
kx2, an exact form for the characteristic function can be found. Thus, from the

corresponding FFPE in Fourier space,

o

ot
P ðk; tÞ ¼ � k

mc
k

o

ok
P ðk; tÞ � KajkjaP ðk; tÞ; ð25Þ

by the method of characteristics one obtains

Pðk; tÞ ¼ exp �mcKajkja

ka
1� e�akt=ðmcÞ
 �� �

ð26Þ

for an initially central d-peak, P ðx; 0Þ ¼ dðxÞ [19]. This is but the characteristic function of an LSD with time-varying
width. For short times, 1� expð�akt=½mc�Þ � akt=½mc� grows linearly in time, such that P ðk; tÞ � expð�KajkjatÞ as for a
free Lévy flight. At long times, the stationary solution defined through

P stðkÞ ¼ exp �mcKajkja

ka

� �
; ð27Þ

is reached. Interestingly, it has the same stable index a as the driving Lévy noise. By separation of variables, a summa-
tion formula for P ðx; tÞ can be obtained similarly to the solution of the Ornstein–Uhlenbeck process in the presence of
white Gaussian noise, however, with the Hermite polynomials replaced by H-functions [19].

 0.01

 0.1

 1

-2  0  2  4  6  8  10

P(
x,

t)

x

Cauchy, t=0.1
Cauchy, t=0.5
Cauchy, t=2.0

Fig. 2. Cauchy distribution with K1 ¼ 1 advected along a field F 0=ðmcÞ ¼ 2, for different times.
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We note that in the Gaussian limit a ¼ 2, the stationary solution by necessity has to match the Boltzmann distribu-
tion corresponding to expð�kBTk2=½2k�Þ. This requires that the Einstein–Stokes relation K2 ¼ kBT=½mc� is fulfilled [23].
One might therefore speculate whether for a system driven by external Lévy noise a generalized Einstein–Stokes relation
should hold, as was established for the subdiffusive case [10,8]. As will be shown now, in steeper than harmonic external
potentials, the stationary form of P ðx; tÞ even leaves the basin of attraction of LSDs.

4.2. Steeper than harmonic potentials

To investigate the behaviour of Lévy flights in potentials, that are steeper than the harmonic case considered above,
we introduce the non-linear oscillator potential

V ðxÞ ¼ a
2

x2 þ b
4

x4; ð28Þ

that can be viewed as a next order approximation to a general confining, symmetric potential. It turns out that the
resulting process differs from above findings if a suitable choice of the ratio a=b is made. For simplicity, we introduce
dimensionless variables through

x! x=x0; t! t=t0; a! at0=ðmcÞ; ð29Þ

where

x0 ¼
mcKa

b

� �1=ð2þaÞ

; t0 ¼
xa

0

Ka
; ð30Þ

arriving at the FFPE

o

ot
Pðk; tÞ þ jkja ¼ k

o3

ok3
� ak

o

ok

� �
Pðk; tÞ: ð31Þ

Consider first the simplest case of a quadratic oscillator with a ¼ 0 in the presence of Cauchy noise (a ¼ 1). In this limit,
the stationary solution can be obtained exactly, yielding the expression

P stðxÞ ¼
1

p
1

1� x2 þ x4
ð32Þ

plotted in Fig. 3. Two distinct new features appear in comparison to the free Lévy flight, and the Lévy flight in an har-
monic potential: (1) Instead of the maximum at x ¼ 0, one observes two maxima positioned at

xm ¼ �
ffiffiffiffiffiffiffiffi
1=2

p
; ð33Þ

at x ¼ 0, we find a local minimum. (2) There occurs a power-law asymptote

P stðxÞ �
1

px4
ð34Þ

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-3 -2 -1  0  1  2  3

P
st

(x
)

x

Fig. 3. Bimodal stationary probability density P stðxÞ from Eq. (32). The maxima are at �
ffiffiffiffiffiffiffiffi
1=2

p
.
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for jxj � 1; consequently, this stationary solution no longer represents an LSD, and the associated mean squared dis-
placement is finite, hx2i <1.

A more detailed analysis of Eq. (31) reveals [24,16], that (i) the bimodality of Pðx; tÞ occurs only if the amplitude of
the harmonic term, a, is below a critical value ac; (ii) for general a, the asymptotic behaviour is
P stðxÞ � p�1 sinðpa=2ÞCðaÞjxj�a�3; (iii) and there exists a finite bifurcation time tc at which the initially monomodal form
of Pðx; tÞ acquires a zero curvature at x ¼ 0, before settling in the terminal bimodal form.

Interestingly, in the more general power-law behaviour

V ðxÞ ¼ jxj
c

c
; ð35Þ

the turnover from monomodal to bimodal form of Pðx; tÞ occurs exactly when c > 2. The harmonic potential is there-
fore a limiting case when the solution of the FFPE still belongs to the class of LSDs and follows the generalized central
limit theorem. This is broken in a superharmonic (steeper than harmonic) potential. The corresponding bifurcation time
tc is finite for all c > 2 [16]. An additional effect appears when c > 4: there exists a transient trimodal state when the
relaxing dðxÞ-peak overlaps with the forming humps at x ¼ �xm. At the same time, the variance is finite, if only
c > 4� a, following from the asymptotic stationary solution

P stðxÞ �
sinðpa=2ÞCðaÞ

pjxjaþc�1
: ð36Þ

Details of the asymptotic behaviour and the bifurcations can be found in Refs. [24,16]. From a reverse engineering point
of view, Lévy flights in confining potentials are studied in [25].

5. Non-trivial boundary conditions

One might naively expect that a jump process of Lévy type, whose variance diverges (unless confined in a steep
potential) may lead to ambiguities when boundary conditions are introduced, such as an absorbing boundary at finite
x. Indeed, it is conceivable that for a jump process with extremely long jumps, it becomes ambiguous how to properly
define the boundary condition: should the test particle be absorbed when it arrives exactly at the boundary, or when it
crosses it anyplace during a non-local jump?

This question is trivial in the case of a narrow jump length distribution: all steps are small, and the particle cannot
jump across a point (in the continuum limit considered herein). For such processes, one enforces a Cauchy boundary
condition P ð0; tÞ ¼ 0 at the point x ¼ 0 of the absorbing boundary, removing the particle once it hits the barrier after
starting at x0, where the dynamics is governed by Eq. (15) with F ðxÞ ¼ 0. Its solution can easily be obtained by standard
methods, for instance, the method of images. This is completely equivalent to considering the first arrival to the point
x ¼ 0, expressed in terms of the diffusion equation with sink term:

o

ot
Pðx; tÞ ¼ K

o2

ox2
Pðx; tÞ � pfaðtÞdðxÞ; ð37Þ

defined such that P ð0; tÞ ¼ 0. Note that the quantity P is no longer a probability density, as probability decays to zero;
for this reason, we use the notation P. From Eq. (37) by integration we obtain the survival probability

SðtÞ ¼
Z

Pðx; tÞdx ð38Þ

with Sð0Þ ¼ 1 and limt!1SðtÞ ¼ 0. Then, the first arrival density becomes

pfaðtÞ ¼ �
d

dt
SðtÞ: ð39Þ

Eq. (37) can be solved by standard methods (determining the homogeneous and inhomogeneous solutions). It is then
possible to express Pðx; tÞ in terms of the propagator P ðx; tÞ, the solution of Eq. (15) with F ðxÞ ¼ 0 with the same initial
condition, Pðx; 0Þ ¼ dðx� x0Þ and natural boundary conditions. One obtains

Pð0; tÞ ¼
Z t

0

pfaðsÞPðx0; t � sÞds; ð40Þ

such that the first arrival density corresponds to the waiting time distribution to jump from x0 to 0 (or, vice versa, since
the problem is symmetric). In Laplace space, this relation takes on the simple algebraic form pfaðuÞ ¼ Pð0; uÞ=Pðx0; uÞ.

R. Metzler et al. / Chaos, Solitons and Fractals 34 (2007) 129–142 135
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Both methods the explicit boundary value problem and the first arrival problem for Gaussian processes produce the
well-known first passage (or arrival) density of Lévy–Smirnov type (1),

pðtÞ ¼ pfaðtÞ ¼
x0ffiffiffiffiffiffiffiffiffiffiffiffi

4pKt3
p exp � x2

0

4Kt

� �
� x0ffiffiffiffiffiffiffiffiffiffiffiffi

4pKt3
p ; ð41Þ

with the asymptotic power-law decay pðtÞ � t�3=2, such that no mean first passage time exists [4,26].
Long-tailed jump length distributions of Lévy stable form, however, endow the test particle with the possibility to

jump across a certain point repeatedly. The first arrival necessarily becomes less efficient. Indeed, as shown in Ref. [27],
the Gaussian result (41) is generalized to

pfaðtÞ � CðaÞ xa�1
0

K1�1=a
a t2�1=a

; as t!1 ð42Þ

with CðaÞ ¼ aCð2� aÞCð2� 1=aÞ sinðp½2� a�=2Þ sin2ðp=aÞ=ðp2½a� 1�Þ, and 1 < a P 2 [27]. The long-time decay
� t�2þ1=a is slower than in (41). In Fig. 4, we show simulations results of the first arrival problem, corroborating the
analytic result for various a. The insensitivity of the power-law slope to the initial condition is demonstrated in
Fig. 5. However, we cannot realize a d-point removal in the simulations but need to define a small but finite interval
for removing the particle; Fig. 5 also shows that if this interval w is chosen too wide, for increasing width w the result
slowly becomes steeper, eventually it should approach the �3=2 slope. Note that in both figures, we plot tpfaðtÞ for
clarity.

One might naively assume that the first passage problem (the particle is removed once it crosses the boundary) for
Lévy flights should be more efficient, that is, the first passage density pðtÞ should decay quicker, than for a narrow jump
length distribution. However, as we have a symmetric jump length distribution kðnÞ, the long outliers characteristic for
these Lévy flights can occur both toward and away from the absorbing barrier. From this point of view it is not totally
surprising to see the simulations result in Figs. 6 and 7, that clearly indicate a universal asymptotic decay� t�3=2, exactly
as for the Gaussian case.

In fact, for all Markovian processes with a symmetric jump length distribution, the Sparre Andersen theorem
[28,2,29] proves without knowing any details about kðnÞ the asymptotic behaviour of the first passage time density uni-
versally follows pðtÞ � t�3=2. The details of the specific form of kðnÞ only enter the prefactor, and the pre-asymptotic
behaviour. A special case of the Sparre Andersen theorem was proved in Ref. [30] when the particle is released at
x0 ¼ 0 at time t ¼ 0, and after the first jump an absorbing boundary is installed at x ¼ 0. This latter case was simulated
extensively in Ref. [31]. From a fractional diffusion equation point of view, it was shown in Ref. [27] that the fractional
operator oa=ojxja needs to be modified, to account for the fact that Pðx; tÞ � 0 beyond the absorbing boundary, such
that long-range correlations are present exclusively for all x in the semi-axis containing x0. The fractional diffusion
equation in the presence of the absorbing boundary therefore has to be modified to [27]

o

ot
Pðx; tÞ ¼ Ka

j
o2

ox2

Z 1

0

Pðx0; tÞ
jx� x0ja�1

dx0; ð43Þ
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Fig. 4. First arrival density for various values of a and trap width w ¼ 0:25. For a ¼ 1:2 and a ¼ 1:8 we compare to analytically
predicted power-law (42). In all cases the decay is slower than for the Brownian result, � t�3=2, that is also shown.
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where j ¼ 2Cð2� aÞj cosðpa=2Þj, such that the first term on the right hand side no longer represents a Fourier convo-
lution. An approximate solution with Cauchy boundary condition reveals pðuÞ � 1� cu1=2, where c is a constant, indeed
leading to the Sparre Andersen behaviour pðtÞ � t�3=2.
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Fig. 5. First arrival density for a ¼ 1:2 for various initial positions x0 and trap width w ¼ 0:3, that turned out to be optimal in the
simulations. All data follow the same scaling law predicted by Eq. (42). If w is chosen too wide, the slope increases toward the t�3=2

behaviour. Note that we plot tpfaðtÞ, and that pfaðtÞ is not normalized.
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Fig. 6. First passage density for a ¼ 1:2 for various initial positions x0 away from the absorbing boundary. Each time the particle
crosses the boundary, it is removed. In all cases, the universal � t�3=2 scaling is observed. The two additional lines represent the result
of the corresponding first arrival problem and the images method.
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Fig. 7. First passage density for various stable indices a and initial position x0 ¼ 10:0 away from the absorbing boundary. Again, the
universal � t�3=2 scaling is distinct.
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This also demonstrates that the method of images no longer applies when Lévy flights are considered, for the images
solution

Pimðx; tÞ ¼ P ðx� x0; tÞ � P ðxþ x0; tÞ ð44Þ

would be governed by the full fractional diffusion equation, and not Eq. (43), and the result for the first passage density,
pðtÞ � t�1�1=a would decay faster than the Sparre Andersen universal behaviour. A detailed discussion of the applica-
bility of the method of images is given in terms of a subordination argument in Ref. [20]. We emphasize that this subtle
failure of the method of images has been overlooked in literature previously [32,33], and care should therefore be taken
when working with results based on such derivations. We also note that the method of images works in cases of sub-
diffusion, as the step length is narrow [34].

6. Kramers problem for Lévy flights

Many physical and chemical problems are related to the thermal fluctuations driven crossing of an energetic barrier,
such as dissociation of molecules, nucleation processes, or the escape from an external, confining potential of finite
height [35]. A particular example of barrier crossing in a double well potential driven by Lévy noise was proposed
for a long-time series of paleoclimatic data [36]. Further cases where the crossing of a potential barrier driven by Lévy
noise is of interest is in the theory of plasma devices [37], among others [9].

To investigate the detailed behaviour of barrier crossing under the influence of external Lévy noise, we choose the
rather generic double well shape

V ðxÞ ¼ � a
2

x2 þ b
4

x4: ð45Þ

Integrating the Langevin Eq. (18) with white Lévy noise, we find an exponential decay of the survival density in the
initial well:

pðtÞ ¼ 1

T c

exp � t
T c

� �
; ð46Þ

as demonstrated in Fig. 8. Lévy flight processes being Markovian, this is not surprising, since the mode relaxation is
exponential [8,9]. More interesting is the question how the mean escape time Tc behaves as function of the characteristic
noise parameters D and a. While in the regular Kramers problem with Gaussian driving noise the Arrhenius-type acti-
vation T c ¼ C expðh=DÞ is followed, where h is the barrier height, and the prefactor C includes details of the potential, in
the case of Lévy noise, a power-law form

T cða;DÞ ¼
CðaÞ
KlðaÞ

a

ð47Þ

was assumed [38]. Detailed investigations [39] show that the scaling exponent lðaÞ ¼ 1 for all a strictly smaller than 2.
As already proposed in Ref. [40] and derived in [41] in a somewhat different model, this means that, apart from a pre-
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Fig. 8. Probability density function pðtÞ of barrier crossing times for a ¼ 1:0 and D ¼ 10�2:5 � 0:00316. The dashed line is a fit to Eq.
(46) with MCT T c ¼ 1057:8� 17:7.
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factor, the Lévy flight is insensitive to the external potential for the barrier crossing. This behaviour is distinctly visible
in Fig. 9 in form of the parallel lines in the log–log scale. Note that in comparison to Ref. [38], also values of a in the
range ð0; 1Þ are included. For large values of D, deviations from the scaling are observed: eventually it will only take a
single jump to cross the barrier when D!1. Detailed studies show indeed that eventually the unit time step is reached,
i.e., T c ! 1.

7. More on the ‘‘pathology’’

Despite their mathematical foundation due to the generalized central limit theorem and their broad use in the sci-
ences and beyond as description for statistical quantities, and despite the existence of systems (for instance, the diffusion
on a polymer in chemical space mediated by jumps where the polymer loops back on itself [42–44]), the divergence of
the fluctuations of Lévy processes is sometimes considered a pathology. This was already put forward by West and
Seshadri [45], who pointed out that a Lévy flight in velocity space would be equivalent to a diverging kinetic energy.
Here, we show that higher order dissipation effects lead to natural cutoffs in Lévy processes.

At higher velocities the friction experienced by a moving body starts to depend on the velocity itself [46]. Such non-
linear friction is known from the classical Riccati equation M dvðtÞ=dt ¼ Mg � KvðtÞ2 for the fall of a particle of mass M

in a gravitational field with acceleration g [47], or autonomous oscillatory systems with a friction that is non-linear in
the velocity [46,48]. The occurrence of a non-constant friction coefficient cðV Þ leading to a non-linear dissipative force
�cðV ÞV was highlighted in Klimontovich’s theory of non-linear Brownian motion [49]. It is therefore natural that
higher order, non-linear friction terms also occur in the case of Lévy processes.

We consider the velocity-dependent dissipative non-linear form (necessarily an even function) [50]

cðV Þ ¼ c0 þ c2V 2 þ 	 	 	 þ c2N V 2N
)c2N > 0 ð48Þ

for the friction coefficient of the Lévy flight in velocity space as governed by the Langevin equation

dV ðtÞ þ cðV ÞV ðtÞdt ¼ dLðtÞ ð49Þ

with the constant friction c0 ¼ cð0Þ. LðtÞ is the a-stable Lévy noise defined in terms of a characteristic function
p
ðx; tÞ ¼FfpðL; tÞg �

R1
�1 pðL; tÞ expðixLÞdL of the form p
ðx; tÞ ¼ expð�DjxjatÞ [1,51], where D of dimension

cma/s is the generalised diffusion constant. This is equivalent to the fractional Fokker–Planck equation [15,37,16,8,9]

oP ðV ; tÞ
ot

¼ o

oV
ðV cðV ÞP Þ þ D

o
aP

ojV ja : ð50Þ

As we showed in Section 4.2 by the example of the Lévy flights in position space, the presence of the first higher order
correction, c2V 2 in the friction coefficient cðV Þ rectifies the Lévy motion such that the asymptotic power-law becomes
steeper and the variance finite. When even higher order corrections are taken into consideration, also higher order mo-
ments become finite. We show an example in Fig. 10 for the second moment.

The effect on the velocity distribution of the process defined by Eqs. (49) and (50) for higher order corrections are
demonstrated in Fig. 11 for the stationary limit, P stðV Þ ¼ limt!1P ðV ; tÞ: while for smaller V the character of the original
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Fig. 9. Characteristic escape time as function of the diffusivity D for the double well potential.
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Lévy stable behaviour is preserved (the original power-law behaviour, that is, persists to intermediately large V), for
even larger V the corrections due to the dissipative non-linearity are visible in the transition(s) to steeper slope(s).

These dissipative non-linearities remove the divergence of the kinetic energy from the measurable subsystem of the
random walker. In the ideal mathematical language, the surrounding bath provides an infinite amount of energy
through the Lévy noise, and the coupling via the non-linear friction dissipates an infinite amount of energy into the
bath, and thereby introduces a natural cutoff in the kinetic energy distribution of the random walker subsystem. Phys-
ically, such divergencies are not expected, but correspond to the limiting procedure of large numbers in probability the-
ory. We showed that both statements can be reconciled, and that Lévy processes are indeed physical.

Also Gaussian continuum diffusion exhibits non-physical features, possibly the most prominent being the infinite
propagation speed inherent of the parabolic nature of the diffusion equation: even at very short times after system prep-
aration in, say, a state Pðx; 0Þ ¼ dðxÞ, there has already arrived a finite portion of probability at large x. This problem
can be corrected by changing from the diffusion to the Cattaneo (telegrapher’s) equation. Still, for most purposes, the
uncorrected diffusion equation is used. Similarly, one often uses natural boundary conditions even though the system
under consideration is finite, since one might not be interested in the behaviour at times when a significant portion of
probability has reached the boundaries. In a similar sense, we showed that ‘‘somewhere out in the wings’’ Lévy flights
are naturally cut off by dissipative non-linear effects. However, instead of introducing artificial cutoffs, knowing that for
all purposes Lévy flights are a good quantitative description and therefore meaningful, we use ‘‘pure’’ Lévy stable laws
in physical models.
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8. Discussion

Despite their popularity, comparatively long history, and their Markovian nature, Lévy flights are not completely
understood. The proper formulation in the presence of non-trivial boundary conditions, their behaviour in external
potentials both infinitely high and finite, as well as their thermodynamical meaning are under ongoing investigation.
We here reported some important recent results.

While the continuous time random walk model for Lévy flights in the absence of non-trivial boundary conditions or
external potentials is a convenient description, in all other cases the fractional Fokker–Planck equation or, equivalently,
the Langevin equation with white Lévy stable noise are the description of choice. These equations in most cases cannot
be solved exactly, however, it is usually straightforward to obtain the asymptotic behaviour, estimates for inflection
points, etc., or to solve them numerically.
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in physics, vol. 450. Berlin: Springer-Verlag; 1995.
[31] Zumofen G, Klafter J. Phys Rev E 1995;51:2805.

R. Metzler et al. / Chaos, Solitons and Fractals 34 (2007) 129–142 141



Aut
ho

r's
   

pe
rs

on
al

   
co

py

[32] Montroll EW, West BJ. In: Montroll EW, Lebowitz JL, editors. Fluctuation phenomena. Amsterdam: North-Holland; 1976.
[33] Gitterman M. Phys Rev E 2000;62:6065.
[34] Metzler R, Klafter J. Physica 2000;278A:107.
[35] Hänggi P, Talkner P, Bokrovec M. Rev Mod Phys 1990;62:251.
[36] Ditlevsen PD. Geophys Rev Lett 1999;26:1441.
[37] Chechkin AV, Gonchar V Yu, Szydlowsky M. Phys Plasma 2002;9:78.
[38] Chechkin AV, Gonchar V Yu, Klafter J, Metzler R. Europhys Lett 2005;72:348.
[39] Sliusarenko AYu, Chechkin AV, Metzler R, Klafter J. Phy Rev E, in press.
[40] Ditlevsen PD. Phys Rev E 1999;60:172.
[41] Imkeller P, Pavlyukevich I. J Phys A: Math Gen 2006;39:L237.
[42] Sokolov IM, Mai J, Blumen A. Phys Rev Lett 1997;79:857.
[43] D. Brockmann, T. Geisel, Phys Rev Lett 91, 048303.
[44] Lomholt MA, Ambjörnsson T, Metzler R. Phys Rev Lett 2005;95:260603.
[45] West BJ, Seshadri V. Physica A 1982;113:203.
[46] Bogoliubov NN, Mitropolsky YA. Asymptotic methods in the theory of non-linear oscillations. Delhi: Hindustan Publication

Corparation; 1961 [distributed by Gordon&Breach, New York].
[47] Davis H. Introduction to nonlinear differential and integral equations. New York, NY: Dover Publications, Inc.; 1962.
[48] Andronow AA, Chaikin CE, Lefschetz S. Theory of oscillations. Princeton, NJ: University Press; 1949.
[49] Klimontovich Yu L. Turbulent motion and the structure of chaos: a new approach to the statistical theory of open systems.

Dordrecht, NL: Kluwer; 1992.
[50] Chechkin AV, Gonchar VY, Klafter J, Metzler R. Phys Rev E 2005;72:010101(R).
[51] Samorodnitsky G, Taqqu MS. Stable non-Gaussian random processes: stochastic models with infinite variance. New York:

Chapman and Hall; 1994.

142 R. Metzler et al. / Chaos, Solitons and Fractals 34 (2007) 129–142


