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PACS. 05.40.Fb – Random walks and Levy flights.

PACS. 02.50.Ey – Stochastic processes.

PACS. 05.10.Gg – Stochastic analysis methods (Fokker-Planck, Langevin, etc.).

Abstract. – We consider the barrier crossing in a bistable potential for a random-walk process
that is driven by Lévy noise of stable index α. It is shown that the survival probability decays
exponentially, but with a power law dependence Tc(α, D) = C(α)D−µ(α) of the mean escape
time on the noise intensity D. Here C is a constant, and the exponent µ varies slowly over a large
range of the stable index α ∈ [1, 2). For the Cauchy case, we explicitly calculate the escape rate.

Introduction. – The escape of a particle from a potential well is a generic problem inves-
tigated by Kramers [1] that is often used to model chemical reactions, nucleation processes,
or the escape from an external, confining potential of finite height [2]. Despite the outstand-
ing role of the central-limit theoreom giving rise to the Gaussian nature of the propagator
of traditional Brownian motion, a large number of stochastic processes have been identified,
whose behaviour is more general and leaves the basin of attraction of Gaussian processes [3].
Instead, these processes are governed by the generalised central-limit theorem, leading to the
Lévy stable nature of their propagators [4, 5]. External noise, that is Lévy stable, is typical
for systems such as fluctuations in plasmas [6], random walks along a polymer chain in solu-
tion such that the walker can jump across contact points created by polymer looping [7], or
fluctuations in the kinetic energy in optical lattices [8]. It is therefore a natural question to
ask how the Lévy stable nature of such processes generalises the barrier crossing behaviour of
the classical Kramers problem. An interesting example is given by the α-stable noise-induced
barrier crossing in long paleoclimatic time series [9]; another potential application is given by
the escape from traps in optical or plasma systems, see, for instance, [10].
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In what follows, we investigate barrier crossing of processes in some coordinate x(t) that
are governed by a Langevin equation of the form

dx(t)
dt

= − 1
mγ

dV (x)
dx

+D1/αξα(t), (1)

where ξα(t) denotes white Lévy noise such that the quantity L(∆t) =
∫ t+∆t

t
ξα(τ)dτ is a

symmetric, α-stable process with probability density p(L,∆t) defined in terms of the charac-
teristic function p(k,∆t) = exp[−D|k|α∆t] (0 < α ≤ 2) [11]. D, of dimension [length]α/time,
is the strength of the noise, m the mass of the diffusing particle, and γ is a friction constant.
The external potential is V (x), for which we choose the rather generic double-well shape

V (x) = −a

2
x2 +

b

4
x4; (2)

compare, for instance, ref. [12]. For convenience, we turn to dimensionless variables t →
t/t0 and x → x/x0 with t0 = mγ/a and x2

0 = 1/(bt0) and dimensionless noise strength
D → Dt

1/α
0 /x0 (by ξα(t0t) → t

1/α−1
0 ξα(t)) [6], such that we arrive at the stochastic equation

dx(t)
dt

=
(
x− x3

)
+D1/αξα(t). (3)

Here, we restrict our discussion to 1 ≤ α < 2.
In regular Brownian motion corresponding to the limit α = 2, the survival probability S

of a particle whose motion at time t = 0 is initiated in one of the potential minima xmin = ±1,
follows an exponential decay S (t) = exp [−t/Tc] with the mean escape time Tc, such that the
probability density function p(t) = −dS /dt of the barrier crossing time t becomes

p(t) = T−1
c exp [−t/Tc] . (4)

The mean crossing time (MCT) follows the exponential law

Tc = C exp [h/D] , (5)

where h is the barrier height (equal to 1/4 for the potential (2)) in rescaled variables, and
the prefactor C includes details of the potential [2]. We want to find out how the presence of
Lévy stable noise modifies the laws (4) and (5).

Numerical solution. – The Langevin equation (3) was integrated numerically following
the procedure developed in ref. [13]. From this, we obtained the trajectories of the particle
as displayed in fig. 1. In the Brownian limit, we reproduce qualitatively the behaviour found
in ref. [12]. Accordingly, the fluctuations around the positions of the minima are localised in
the sense that their width is clearly smaller than the distance between minima and barrier.
In contrast, for progressively smaller stable index α, characteristic spikes become visible, and
the individual sojourn times in one of the potential wells decrease. In particular, we note
that single spikes can be of the order of or larger than the distance between the two potential
minima. This reflects the slowly decaying probability density p(L,∆t) of the magnitude of
the Lévy stable noise ξα, as a function of L.

From such single trajectories we determine the individual barrier crossing times as the
time interval between a jump into one well across the zero line x = 0 and the escape across
x = 0 back to the other well. In fig. 2, we demonstrate that on average, the crossing times are
distributed exponentially, and thus follow the same law (4) known from the Brownian case.
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Fig. 1 – Typical trajectories for different stable index α obtained from numerical integration of the
Langevin equation (3). The dashed lines represent the potential minima at ±1. In the Brownian case
α = 2, previously reported behaviour is recovered [12]. In the Lévy stable case, occasional long jumps
of the order of or larger than the separation of the minima can be observed. Note the different scales.

Such a result was reported in a previous study of Kramers’ escape driven by Lévy noise [14].
In fact, this observed exponential decay of the survival probability S in a Lévy flight is not
surprising, given the Markovian nature of the process. Due to the Lévy stable properties of the
noise ξα, the Langevin equation (3) produces occasional long jumps, by which the particle can
cross the barrier. Large enough values of the noise ξα thus occur considerably more frequently
than in the Brownian case with Gaussian noise (α = 2), causing a lower MCT.

The numerical integration of the Langevin equation (3) was repeated for various stable
indices α, and for a range of noise strengths D. From these simulations we obtain the detailed
dependence of the MCT Tc(α,D) on both parameters, α and D. As expected, for decreasing
noise strength, the MCT increases. For sufficiently large values of 1/D and fixed α, a power
law trend in the double-logarithmic plot is clearly visible. These power law regions, for the
investigated range of α are in very good agreement with the analytical form

Tc(α,D) =
C(α)
Dµ(α)

, (6)

over a large range of D. Equation (6) is the central result of this study. It is clear from fig. 3,
that this relation is appropriate for the entire α-range sweeped over in our simulations. For
larger noise strength, we observe a breakdown of the power law trend, and the curves seem
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Fig. 2 – Probability density function p(t) of barrier crossing times for α = 1.0 and D = 10−2.5 ≈
0.00316. The dashed line is a fit to eq. (4) with MCT Tc = 1057.8 ± 17.7.

to approach the MCT behaviour of the Brownian process (α = 2) as a common envelope. A
more thorough numerical analysis of this effect will be necessary to be more precise about
its nature. What we want to focus on here is the behaviour (6). We note from fig. 3 that
for α ranging roughly between the Cauchy case α = 1 and the Holtsmark case α = 3/2, the
exponent µ is almost constant, i.e., the corresponding lines in the log-log plot are almost
parallel. The behaviour of both the scaling exponent µ and the prefactor C as a function of
stable index α becomes clearer in fig. 4. There, we recognise a slow variation of µ for values of
α between 3/2 and slightly below 2, before a steeper rise in close vicinity of 2. This apparent
divergence must be faster than any power, so that in the Gaussian noise limit α = 2, the
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Fig. 3 – Escape time Tc as a function of noise strength D for various α’s. Above roughly lg 1/D = 1.5,
a power law behaviour is observed that corresponds to eq. (6). The curve (5) for α = 2.0 appears to
represent a common envelope.
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Fig. 4 – Scaling exponent µ as function of stable index α. The constant behaviour µ(α) ≈ 1 over
the range 1 ≤ α � 1.6 is followed by an increase above 1.6, and it eventually shows an apparent
divergence close to α = 2, where eq. (5) holds. Corresponding to the right ordinate, we also plot the
decadic logarithm of the amplitude C(α).

activation follows the exponential law (5) instead of the scaling form (6). The µ(α) results are
fitted with the parabola indicated in the plot where, for the analytical results derived below,
we forced the fit function to go through the point µ(1) = 1.

Analytical approximation for the Cauchy case. – In the Cauchy limit α = 1, we can find
an approximate result for the MCT as a function of noise strength D. To this end, we start
with the rescaled fractional Fokker-Planck equation [3, 5, 15–17], corresponding to eq. (3),

∂f(x, t)
∂t

=
∂

∂x

(−x+ x3
)
f(x, t) +D

∂α

∂|x|α f(x, t), (7)

where the fractional Riesz-Weyl derivative is defined in terms of the Fourier transform through
F {∂αf(x, t)/∂|x|α} ≡ −|k|αf(k, t), and where F{f(x, t)} =

∫ ∞
−∞ f(x, t)eikxdx; see refs. [3,

18] for explicit definitions and solution methods. Rewriting eq. (7) in the continuity form
∂f(x, t)/∂t + ∂j(x, t)∂x = 0, that is equivalent to ∂f(k, t)∂t = ikj(k, t) in Fourier space, we
obtain for the flux the expression

j(k) =
(
− ∂3

∂k3
− i

∂

∂k
+ iD sign(k)|k|α−1

)
f(k, t). (8)

To obtain an approximate expression for the MCT, we follow the standard steps [19] and for
large values of 1/D make the constant flux approximation assuming that the flux across the
barrier is a constant, j0, corresponding to the existence of a stationary solution fst(x). By
integration of the continuity equation, it then follows that eq. (4) is fulfilled, and Tc = 1/j0.
Due to the low noise strength, we also assume that for all relevant times the normalisation∫ 0

−∞ fst(x) = 1 is fulfilled.
In this constant flux approximation, we obtain from eq. (8) the relation

d3fst(x)
dk3

+
dfst(x)
dk

−D sign(k)fst(x) = 2πij0δ(k) (9)
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in the Cauchy case α = 1. With the ansatz fst(k) = C1e
z±k + C2e

(z∗)±k for k ≷ 0, we find
the characteristic equation (z±)3 + z± ∓ D = 0 solved by the Cardano expressions z± =
− 1

2 (u± + v±) + 1
2 i
√
3 (u± − v±), with u3

+ = D
(
1 +

√
1 + 4/[27D2]

)
/2 = −v3

− and v3
+ =

D
(
1− √

1 + 4/[27D2]
)
/2 = −u3

−. Matching the left and right solutions at k = 0, requiring
that fst(k) ∈ R, and assuming that fst(k) in the constant flux approximation is far from the
fully relaxed (t → ∞) solution, we obtain the shifted Cauchy form

fst(k) =
j0

2ζ+ζ−
ζ+

(x+ ζ−)
2 + ζ2

+

, ∴ ζ+ =
1
2
(u+ + v+) , ζ− =

√
3
2

(u+ − v+) . (10)

With the normalisation
∫ 0

−∞ fst(x)dx = 1, we arrive at the MCT

Tc =
π

4ζ+ζ−

(
1 +

2
π
arctan

ζ−
ζ+

)
. (11)

For D � 1, ζ+ ≈ D/2 and ζ− ≈ 1, so that Tc ≈ π/D. In comparison with the numerical result
corresponding to fig. 2 with Tc = 1057.8 for D = 0.00316, we calculate from our approximation
Tc ≈ 994.2, within 6% of the numerical result. This good agreement also corroborates that
the constant flux approximation appears to pertain to Lévy flights.

Discussion. – This is the first detailed and systematic analysis of the problem of escape
over a potential barrier for a process governed by Lévy stable noise, i.e., a Lévy flight, over
the range of stable indices 1 ≤ α < 2. We observe from numerical simulations an exponential
decrease of the survival probability S (t) in the potential well, in whose bottom we initialise
the process. Moreover, we find that the MCT assumes the scaling form (6) with the scaling
exponent µ being approximately constant in the range 1 ≤ α � 1.6, followed by an increase
before the apparent divergence at α = 2, that leads back to the exponential form prevalent
in the Brownian case, eq. (5). An analytic calculation in the Cauchy limit α = 1 reproduces,
consistently with the constant flux approximation commonly applied in the Brownian case,
the scaling Tc ∼ 1/D and, within a few percent error, the numerical value of the MCT Tc.

Employing scaling arguments, we can restore dimensionality into expression (6) for the
MCT. From our model potential (2), in whose coefficients we choose to absorb the friction
factor mγ such that a → a/(mγ) and b → b/(mγ), we find the location of the minima,
xmin = ±√

a/b and the barrier height ∆V = a2/(4b). In terms of the rescaled prefactors a
and b with dimensions [a] = s−1 and [b] = s−1cm−2, we can now re-introduce the dimensions
through t0 = 1/a and x2

0 = b/a. In the domain where Tc ∼ 1/D (i.e., µ(α) ≈ 1), we then
come up with the scaling

Tc ∼ xα
0

D
=

(a/b)α/2

D
=

|xmin|α
D

, (12)

in analogy to the result reported in ref. [14]. However, we remind the two caveats based on
our results: i) The linear behaviour in 1/D does not appear valid over the entire α-range. For
larger values, α � 1.6, the scaling exponent µ(α) assumes non-trivial values; in that case, the
simple scaling used to establish eq. (12) has to be modified. It is not immediately obvious
how this should be done systematically. ii) From relation (12) it cannot be concluded that
the MCT is independent of the barrier height ∆V , despite the sole dependence of Tc on the
distance |xmin| from the barrier. This latter statement is obvious from the expressions for xmin

and ∆V derived for our model potential: the location of the minima relative to the barrier,
and barrier height, namely, are in fact coupled. Therefore, a random walker subject to Lévy
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noise does feel the influence of the potential barrier and does not simply move across it with
the characteristic time given by the free mean-squared displacement. However, as we could
see, the activation for the MCT as a function of noise strength D varies only in the form of a
power law instead of the standard exponential behaviour.

The time dependence of the probability density −dS (t)/dt for first barrier crossing time
of a Lévy flight process is exponential, exactly as in the standard Brownian case. This can
be understood qualitatively from the fact that the process is Markovian. From the governing
dynamical equation (7), it is clear that the relaxation of modes is exponential, compare ref. [5].
For low-noise strengthD, the barrier crossing will be dominated by the slowest time-eigenmode
� e−λ1t with eigenvalue λ1. This is similar to the first passage time problem of a Lévy flight
in a semi-infinite geometry [20].

We finally note that throughout this work we use the term Lévy flight in the sense of
a Lévy stable process in which the drift exerted on the test particle by the external field
enters additively and linearly. This corresponds to the continuous-time random-walk picture
derived in ref. [21] that leads to the dynamical equation (7). There exist alternative ways to
include the external field giving rise to a different behaviour in a double-well potential, see,
for instance, ref. [22].
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