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Abstract

The fractional di�usion equation is solved for di�erent boundary value problems, these being
absorbing and reecting boundaries in half-space and in a box. Thereby, the method of images
and the Fourier–Laplace transformation technique are employed. The separation of variables is
studied for a fractional di�usion equation with a potential term, describing a generalisation of
an escape problem through a uctuating bottleneck. The results lead to a further understanding
of the fractional framework in the description of complex systems which exhibit anomalous
di�usion. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mathematical properties of the di�usion equation

@W
@t
= K1

@2

@x2
W (x; t) (1)

have been extensively studied [1–5] so that numerous methods exist for the solution of
boundary value problems, and for di�usion under the inuence of an external potential
[1–8]. Loosely speaking, an external potential leading to a non-trivial stationary solution
is also a boundary value problem with a discrete set of eigenvalues, and we refer to
both cases as boundary value problems in this loose sense. In the present paper, similar
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conditions are imposed on the fractional di�usion equation (FDE) [9–11]

@W
@t
= 0D

1−
t K

@2

@x2
W (x; t) (2)

with 0¡¡ 1, which describes a non-Markovian di�usion process with a memory
[12–15]. Originally, Schneider and Wyss [9] considered the equivalent fractional inte-
gral equation

W (x; t)−W0(x) = 0D
−
t K

@2

@x2
W (x; t) ; (3)

where the initial value W0(x) ≡ limt→0+W (x; t) is directly incorporated. Thus, Eq. (2)
is obtained by di�erentiating Eq. (3) with respect to time. The fractional Riemann–
Liouville operator in Eq. (2) is de�ned through [16]

0D
1−
t W (x; t) =

1
�()

@
@t

∫ t

0
dt′

W (x; t′)
(t − t′)1− : (4)

Some properties of this fractional operator are listed in Appendix A. The fractional dif-
ferentiation 0D

1−
t contains a convolution integral with a slowly decaying power-law

kernel M (t) = t−1=�(). In Fourier–Laplace space, the solution of the FDE (2) for
natural boundary conditions lim|x|→∞W (x; t) = 0 and for a sharp initial condition
W0(x) = �(x) reads [9–11,15,17,18]

W (k; u) = u−1
1

u + Kk2
; (5)

from which the mean square displacement

〈x2〉= 2K
�(1 + )

t (6)

can be derived by 〈x2〉(u) = −limk→0 (@2=@k2)W (k; u) and Laplace inversion. Alter-
natively, this result is obtained from Eq. (2) or Eq. (3) via integration by parts
and making use of Eq. (A.7). Eqs. (2), (3) and (6) contain the generalised di�u-
sion coe�cient of dimension [K] = cm2 s−. Eq. (6) deviates from the linear time
dependence 〈x2〉 = 2K1t which is the hallmark of Brownian motion [1,3–5,8]. The
FDE, Eq. (2), for 0¡¡ 1 describes anomalous subdi�usive processes [19–22]. Sub-
di�usion is encountered, for instance, in highly rami�ed media like porous systems
[23], percolation clusters [24], exact fractals [25], in the motion of a bead in a
polymer network [26,27], or in the charge carrier transport in amorphous semi-
conductors [28–30].
The FDE, Eq. (2), and fractional Fokker–Planck equations [13,14,31–36] are closely

related to generalised L�evy-type statistics [22,37,38] and can be derived from continu-
ous time random walk models, or their extensions [8,13–15,17,18,28,29,36,39–41], or
from a Langevin equation [31,32,42,43]. Complementing to random walks, or to the
generalised master equation approach [13,14,44], the FDE and the fractional Fokker–
Planck equations constitute an additional framework to describe di�usion in complex
systems. Here we demonstrate that fractional equations make it possible to calculate,
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in a straightforward manner and in analogy to the techniques used in the Brownian
limit, explicit solutions for boundary value problems, and in the presence of external
potential �elds.
Firstly, reecting and absorbing boundaries in half-space and in a box of �nite

size are solved by the method of images. The results feature deviations from the
corresponding Brownian limiting cases. Subsequently, we consider the escape problem
through a uctuating bottleneck in the presence of a slowly decaying memory which
is formally equivalent to anomalous di�usion in an external �eld. This leads to the
description in terms of a fractional Smoluchowski-type equation with a discrete set
of eigenvalues. Using the method of separation of variables, a solution in terms of a
series involving the Mittag–Le�er function and the Hermite polynomials is obtained.
As demonstrated by the plotted results, the fractional equations produce quite di�erent
behaviours in comparison to their Brownian counterparts.

2. Reecting and absorbing boundaries

Subdi�usion described through Eq. (2) corresponds to a situation in the random walk
picture where the jumps are characterised by a �nite jump length variance
[8,13–15,41]. The non-Markovian character of the FDE (2) can be shown to come
about in a random walk picture where the time elapsing between successive jumps
is drawn from a waiting time distribution which allows for long waiting times such
that the characteristic waiting time diverges [13,39–41]. Consequently, the method of
images [4,45] can be applied to subdi�usion, in contrary to the case of L�evy ights
[46,47].

2.1. Half-space problem

The half-space problem concerns the di�usion on a line which is terminated at one
point by a boundary which can be either of reecting or absorbing nature.

2.1.1. Reecting condition
Suppose that a reecting boundary is placed at the origin of the x-axis on which

the di�using particle moves. This condition is de�ned as a von Neumann problem
in the form @Q(x; t)=@x|x=0 = 0 where Q, speci�ed below, denotes the image solution
of this boundary value problem. If the initial condition is a sharp distribution at the
position x0, W0(x)= �(x− x0), 1 the free solution can be “folded” along a line through
the origin, perpendicular to the x-axis, i.e., the unrestricted solution is taken, and the
portion which spreads to the space region opposite to x0, with respect to the origin, is

1 This condition, up to a translation, is equivalent to having a boundary at the position −x0, and the sharp
initial condition W0(x) = �(x).
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reected at this line; the �nal result ful�ls the von Neumann condition. The solution
is thus given by the function [4] 2

Q(x; t|x0) =W (x − x0; t) +W (−x − x0; t) ; (7)

where W (x; t) denotes the solution of the FDE (2), for natural boundary conditions.
The reasoning in terms of the image method, in analogy to the presentation of Feller
[4], chosen to illustrate the coming about of Eq. (7) is not necessary, and some readers
may �nd Eq. (7) as such more intuitive. To construct the image solution Q(x; t|x0),
Eq. (7), we need to develop some preparing considerations. Thus, note that according to
Eq. (5), the di�erent modes of the FDE, Eq. (2), decay according to the Mittag–Le�er
pattern E (see Appendix B)

W (k; t) = E(−Kk2t) (8)

with the asymptotic power-law behaviour W (k; t) ∼ [K�(1 − )k2t]−1. The solution
in position space, W (x; t), is given in terms of the Fox function H 2;01;2 [9–11,48,49],

W (x; t) =
1√
4�Kt

H 2;01;2

[
x2

4Kt

∣∣∣∣∣
(1− 

2 ; )

(0; 1); ( 12 ; 1)

]
(9)

or by the alternative representation, using H 1;01;1 ,

W (x; t) =
1√
4Kt

H 1;01;1

[
|x|√
Kt

∣∣∣∣∣
(1− 

2 ;

2 )

(0; 1)

]
; (10)

with the asymptotic stretched Gaussian behaviour

W (x; t)∼ 1√
4�Kt

√
1

2− 
(
2


)(1−)=(2−)( |x|√
Kt

)−(1−)=(2−)

×exp

−2− 

2

( 
2

)=(2−) [ |x|√
Kt

]1=(1−=2) : (11)

In the Brownian limit  → 1 both Eqs. (9) and (10), as well as Eq. (11), reduce to
the well-known Gaussian propagator

W (x; t) =
1√
4�K1t

exp
(
− x2

4K1t

)
(12)

which is valid for all x and t. Note that in Eq. (11), the stretching exponent 1=(1−=2)
and the power in front of the exponential are similar to the asymptotic result reported
in Refs. [50,51]. As an example, for = 1

2 , the propagator (9) can be rewritten in terms

2 It is easily checked that the von Neumann condition if ful�lled:

@Q
@x

∣∣
x=0

= @W
@x (−x0; t)− @W

@x (−x0; t) :



R. Metzler, J. Klafter / Physica A 278 (2000) 107–125 111

Fig. 1. Probability density function W (x; t). Left: The subdi�usive result for  = 1
2 . Right: The Brownian

case, the Gaussian solution. Both plots are for the times t = 0:1, 1 and 5. The broader tail and the sharper
behaviour close to the origin for the subdi�usive solution is distinct.

of Meijer’s G-function as follows:

W (x; t) =
1√

2�2K1=2t1=2
H 2;00;2

[
x2

8K1=2t1=2

∣∣∣∣∣ (0; 1); ( 14 ; 12 )
]

=
1√

8�3K1=2t1=2
H 3;00;3

[
1
16

(
x2

4K1=2t1=2

)2 ∣∣∣∣∣ (0; 1); ( 14 ; 1); ( 12 ; 1)
]

=
1√

8�3K1=2t1=2
G3;00;3

[
1
16

(
x2

4K1=2t1=2

)2 ∣∣∣∣∣ 0; 14 ; 12
]

(13)

by twice using the duplication formulae of the Gamma function in the Mellin–Barnes-
type integral de�ning the Fox function [48]. This representation is useful, as the Mei-
jer G-function belongs to the implemented special functions of Mathematica where
the syntax for the G-function in Eq. (13) is MeijerG[{{},{}},{{0,1/4,1/2 },{}},
xˆ4 /(16ˆ2t)] for K1=2 ≡ 1. Fig. 1 shows the subdi�usive solution (13) alongside
the Brownian solution. Similar reductions of the Fox function to sums of Meijer
G-functions are possible for rational values of the anomalous di�usion exponent .
Let us now come back to the boundary value problem. Basing on the Meijer

G-representation (13), the half-space solution Q(x; t|x0), Eq. (7), is drawn in Fig. 2,
featuring the slow spread in time of the distinct cusps, i.e., the relatively strong memory
to the initial condition. The second moment in half-space,

〈x2〉h =
∫ ∞

0
dx x2Q(x; t|x0) ; (14)

can be calculated on the basis of the Fourier inversion of the propagator in Eq. (5),

W (x; u) =
u=2−1√
4K

e−
√
u=K|x| : (15)
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Fig. 2. Half-space solution Q(x; t|x0), Eq. (7), for the initial condition x0 = 1 and = 1
2 , drawn at the times

t = 0:1, 1 and 5. A closer inspection of the behaviour in the vicinity of x = 0 shows that the subdi�usive
solution also possesses a horizontal asymptote, i.e., the condition (@=@x)Q(x; t|x0)|x=0 following from the
von Neumann condition is ful�lled.

According to Eqs. (5) and (7), the probability density function in Laplace space,

Q(x; u|x0) = u=2−1√
4K

(e
√
u=K(x−x0)[�(x)−�(x − x0)]

+ e−
√
u=K(x−x0)�(x − x0) + e−

√
u=K(x+x0)) (16)

is obtained, where �(x) denotes the Heaviside function. This leads to the second moment

〈x2〉h = x
2
0

u
+ 2u−1−K (17)

and by Laplace inversion,

〈x2〉h = x20 +
2Kt

�(1 + )
(18)

which is a direct generalisation of the standard result for  = 1. Conversely, it cor-
responds exactly to the case of natural boundary conditions, and initial condition
W0(x) = �(±x0). This insensitivity to the one boundary at x = 0 might be an a priori
surprising result. Physically, it means that the dispersion (variance) of a passive scalar
on the semi-in�nite line has the very same time evolution as on the full line. How-
ever, the mean square displacement, Eq. (24), calculated below includes the directional
information. Note that the result (18) is due to the fact that 〈x2〉h is measured with
respect to x = 0, and not to x = x0. Mathematically, the result is therefore implied by
the fact that x2 is direction independent, i.e., (−x)2 ≡ x2. In order to study the direc-
tionality of this half-space problem, consider the �rst moment, 〈x〉h. The �rst moment
is obtained in a like manner as the second moment, the result being

〈x〉h = x0
(
1 + H 1;01;1

[
x0√
Kt

∣∣∣∣∣
(1; 2 )

(−1; 1)

])
: (19)
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The Fox function occurring in Eq. (19) has the series expansion

H 1;01;1

[
x0√
Kt

∣∣∣∣∣
(1; 2 )

(−1; 1)

]
=

∞∑
�=0

(−1)�
�(1 + =2[1− �])�!

(
x0√
Kt

)�−1
(20)

which is valid for large t. For short t, it becomes exponentially small,

H 1;01;1


 x0√

Kt

∣∣∣∣∣∣
(1; 2 )

(−1; 1)


∼ 1√

2�

( 
2

)−(1+)=(2−) 1√
1− =2

(
x0√
Kt

)−3=(2−)

×exp

−

(
1− 

2

)( 
2

)1=(2=−1)( x0√
Kt

)1=(1−=2)
 :

(21)

Thus, for long times t/(x0=
√
K)2=, the �rst moment grows in time like

〈x〉h ∼
√
K

�(1 + =2)
t=2 +

x20
2�(1− =2)√Kt − O

(
x30
Kt

)
; (22)

i.e., it is, to leading order, independent of x0. The short-time behaviour,

〈x〉h ∼ x0 + O(exp); t.
(

x0√
K

)2=
; (23)

on the contrary, is dominated by the initial value, where O(exp) abbreviates the asymp-
totic form found in Eq. (21). Thus, in the half-space problem, the �rst moment reects
the directionality whereas the second moment is not sensitive to the asymmetry of the
process. The mean square displacement, for short times,

〈(�x)〉h ≡ 〈x2〉h − 〈x〉2h ∼
2K

�(1 + )
t +O(exp) ; (24)

is given to �rst order through the “free” contribution 2Kt=�(1 + ) whereas, due
to the inuence of the reecting boundary, the expression depends, in a non-trivial
manner, on x0 for longer times. If the initial condition is chosen to be W0(x) = �(x),
〈x〉h=

√
Kt=(x0�(1+ =2)) and 〈x2〉h=2Kt=�(1+ ). From the point of view of the

method of images, this situation corresponds to the inversion symmetry of this special
case.

2.1.2. Absorbing condition
An absorbing boundary is de�ned via the Dirichlet condition Q(x0; t) = 0. In this

case, the half-space solution for the sharp initial condition W0(x) = �(x0) takes on the
form

Q(x; t|x0) =W (x − x0; t)−W (−x − x0; t) : (25)
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Fig. 3. Half-space solution Q(x; t|x0), Eq. (25), for the initial condition x0 =1 and = 1
2 , drawn at the times

t = 0:1, 1 and 5. As it should, the probability density function vanishes at the origin.

Obviously, Q(0; t|x0) = 0. In Fig. 3, the half-space solution, Eq. (25), for the absorb-
ing conditions is displayed for various times. Again, note the distinct cusps in the
distribution.
For the absorbing condition, it is interesting to calculate the integrated survival prob-

ability

wh(t) =
∫ ∞

0
dx Q(x; t|x0) (26)

which de�nes that portion of the initial probability which has not yet been absorbed.
Combining the de�nitions, Eqs. (25) and (26), with Eq. (15), one arrives at

wh(u) =
1
u
(1− e−x0

√
u=K) (27)

in Laplace space. By use of the Fox function H 1;00;1 , it is possible to calculate the
Laplace inversion in the form

wh(t) = 1− H 1;01;1
[

x0√
Kt

∣∣∣∣∣
(1; =2)

(0; 1)

]
: (28)

This Fox function H 1;01;1 becomes exponentially small for t. (x0=
√
K)2=, i.e., for large

argument [48],

H 1;01;1

[
x0√
Kt

∣∣∣∣∣
(1; =2)

(0; 1)

]
∼ 1√

2�

(

√
Kt

2x0

)1=(2−)
1√

1− =2

×exp

−

( 
2

)1=(2=−1) (
1− 

2

)( x0√
Kt

)1=(1−=2)

(29)
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and has the series representation [48]

H 1;01;1

[
x0√
Kt

∣∣∣∣∣
(1; =2)

(0; 1)

]
=

∞∑
�=0

(−1)�
�(1− �=2)�!

(
x0√
Kt

)�
(30)

for long times t/(x0=
√
K)2=. We therefore recover the following behaviour:

wh(t) ∼




1− O(exp); t.
(√

K
x0

)2=
;

x0
�(1− =2)√Kt ; t/

(
�(1− =2)

√
K
x0

)2=
:

(31)

The exponential corrections in the short-time behaviour are de�ned in Eq. (29). In this
limit, the probability is still concentrated around the initial point x0, and no signi�cant
portion has reached the absorbing boundary. On the other hand, for long times, the
decrease of the total probability is dominated by the probability of reaching a site which
is a distance |x0| away from the starting point. Note that the time scale distinguishing
the two r�egimes in Eq. (31) is proportional to x0=

√
K, i.e., it includes the starting

point x0, as it should: the farther the starting point is from the origin, the slower is the
decay of the total probability.
In the limit = 1, the integrated survival probability

wh(t) = 1− erfc
(

x0
2
√
K1t

)
= erf

(
x0

2
√
K1t

)
; (32)

involves the error function erf (z) [63].

2.2. Di�usion in a box

As shown in Feller [4], the propagator W (x; t) also su�ces to determine the boundary
value problem of two absorbing or two reecting boundaries which are supposed to
lie at x = ±a. Then, the free solution with the initial value problem W0(x) = �(x) is
successively folded along the lines through x = ±a, perpendicular to the x-axis, i.e.,
the exact solution is constructed with increasing accuracy according to the method of
images, to result in the boundary value solution [4,45]

Q(x; t) =
∞∑

m=−∞
[W (x + 4ma; t)∓W (4ma− x + 2a; t)] ; (33)

where the minus sign stands for absorbing, the plus sign for reecting boundaries at
x = ±a. We note that the solution for the mixed condition of one absorbing and one
reecting boundary is obtained via a �nal folding at the origin of the solution for two
absorbing boundaries.
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Employing the relation 3

∞∑
m=−∞

e−ikm = e−ik=2
∞∑

m=−∞
(−1)m�

(
m+

k
2�

)
; (34)

we rewrite Eq. (33), after an additional Laplace transform, as

Q(x; u) = (4a)−1
∞∑

m=−∞
ei�mx=(2a)

[
W

(
k =

m�
2a
; u

)

∓(−1)mW
(
k =−m�

2a
; u

) ]
: (35)

Making use of Eq. (5), the sums can be simpli�ed, and the following results are
obtained for the cases of absorbing and reecting boundaries, respectively.

2.2.1. Absorbing boundaries
In the case of absorbing boundaries at x =±a we get

Q(x; u) = u−1a−1
∞∑
m=0

e�i(2m+1)x=(2a)
1

u + K(2m+ 1)2�2=4a2
: (36)

Backtransformed into time space, the result becomes

Q(x; t) = a−1
∞∑
m=0

e�i(2m+1)x=(2a)E

(
−K (2m+ 1)

2�2
4a2

t
)

(37)

and again involves the Mittag–Le�er function E which for =1 reduces to the standard
exponential function, see Appendix B. In the special case = 1

2 , we get via (B.5)

Q(x; t) = a−1
∞∑
m=0

e�i(2m+1)x=(2a) exp
(
K
(2m+ 1)4�4

16a4
t
)

×erfc
(
K
(2m+ 1)2�2

4a2
√
t
)
: (38)

The probability density function Q(x; t) is shown in Fig. 4 for a=1 and di�erent times.
Note that the cusp shape of the subdi�usive solution is due to the slower ux from

3 This relation can be easily proved by the Poisson summation formula [52]

∞∑
k=−∞

f(k) =

∞∑
m=−∞

∫ ∞

−∞
dx f(x)e2�imx

and the integral de�nition of the delta function [53]

�(x − x′) =
1
2�

∫ ∞

−∞
dk eik(x−x

′) ;

as well as some resummations.



R. Metzler, J. Klafter / Physica A 278 (2000) 107–125 117

Fig. 4. Probability density function Q(x; t) for absorbing boundaries in x =±1. Left: The subdi�usive case,
 = 1

2 . Right: The Brownian case,  = 1. The curves are drawn for the times t = 0:005, 0.1 and 10 on the
left, and for t = 0:05, 0.1 and 10 on the right. Note the distinct cusp-like shape of the subdi�usive solution
in comparison to the smooth Brownian counterpart. For the longest time, the Brownian solution has almost
completely decayed.

the origin to the wings, encountered in subdi�usion. The integrated survival probability
de�ned through

wa(t) =
∫ a

−a
dx Q(x; t) (39)

becomes

wa(t) =
4
�

∞∑
m=0

(−1)m
2m+ 1

E

(
−K (2m+ 1)

2�2
4a2

t
)

(40)

which has the long-time behaviour wa(t) ∼ const: t−. The integrated survival probabil-
ity wa(t) is plotted in Fig. 5 together with the Brownian counterpart. For long times,
the slow decay of the subdi�usive solution in comparison to the Brownian result is
obvious.

2.2.2. Reecting boundaries
Similarly, for reecting boundaries the result for the image solution is

Q(x; t) =
1
2a
+
1
a

∞∑
m=1

e�imx=aE

(
−K �

2m2

a2
t
)

(41)

which is shown in Fig. 6. In the limit of long times, an equidistribution is reached, as
expected. This is also manifested in the mean square displacement for which we �nd

〈x2〉a = a
2

3
+
4a2

�2
∞∑
m=1

(−1)m
m2

E

(
−Km

2�2
a2

t
)
: (42)

For long times, the saturation value a2=3 is reached. The result is displayed in Fig. 7.
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Fig. 5. Survival probability, Eq. (40), for absorbing boundary conditions, plotted for = 1
2 and =1 (dashed).

For longer times, the faster (exponential) decay of the Brownian solution, in comparison to the power-law
asymptotic of the Mittag–Le�er behaviour, is obvious. Closer inspection shows that the subdi�usive survival
probability distribution also has a horizontal asymptote for short times, i.e., the short-time behaviour is
dominated by the initial value: only a negligible amount of the initial probability released in the origin has
travelled to the boundaries.

Fig. 6. Probability density function Q(x; t) for reecting boundaries at x =±1. Left: The subdi�usive case,
= 1

2 . Right: The Brownian case, =1. Note, again, the cusp shape of the subdi�usive solution. The curves
are shown for the times t = 0:005, 0:1 and 10 on the left and t = 0:05, 0.1 and 10 on the right. The broad
wings in the left graph are due to the stretched Gaussian shape of the free propagator in the subdi�usive
r�egime.

3. A set of eigenvalues — the separation ansatz

The method of images is limited to special spatial symmetries. More versatile is
the approach based on the separation of variables which is addressed now. It has �rst
been applied to fractional equations in Refs. [13–15,33,35] in a harmonic potential. In
general, extensions of Eq. (2) to study cases such as the fractional di�usion–advection
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Fig. 7. Mean square displacement for reecting boundaries, drawn for the subdi�usive ( = 1
2 ) and Brow-

nian ( = 1, dashed) cases. Both curves saturate in the asymptotic value limt→∞〈x2〉 = 1
3 . Note the slow

approaching of the saturation value in the subdi�usive case.

equation [15]

@W
@t
+ v

@W
@x

= 0D
1−
t K

@2

@x2
W (x; t) (43)

or the fractional equation

@W
@t
= 0D

1−
t L(x)W (x; t) ; (44)

with a linear operator L(x) can be solved through the separation of variables.
In Eq. (44), the linear operator might be the Fokker–Planck operator which has been
investigated in Refs. [13–15,31–35].
Consider the fractional di�usion-type equation (44), in combination with the sepa-

ration ansatz

W (x; t) = X (x)T (t) : (45)

The resulting equation

dT (t)
dt

( 0D
1−
t T )−1 =

L(x)X
X

=−� (46)

can then be decoupled into the pair of eigenequations [13–15,33,35]

0D

t T (t)−

t−T0
�(1− ) =−�n;T ; (47)

L(x)X (x) =−�n;X (48)

for an eigenvalue �n; of L(x).
Given the eigenvalue �n;, the corresponding temporal eigensolution, Eq. (47), is

Tn(t) = T0E(−�n;t) : (49)

The normal exponential decay of the modes thus gets replaced by the slow Mittag–
Le�er relaxation, as was already observed for the di�usion modes in Eq. (8). In the
case of the reecting boundary conditions discussed above, its temporal part is to be
augmented with the spatial solution (trigonometric functions), and summed over all
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Fig. 8. Escape of the trapped molecule, from the pocket formed by the con�guration of the macromolecule,
through the bottleneck, the cross-section of which is characterised by the uctuating radius x.

eigenvalues, leading back to the result (41). In what follows, T0 = 1 is assumed. The
full solution is then the sum

∑
n Xn(x)Tn(t) over all eigensolutions.

Although the following considerations in respect to the separation of variables are
valid on a more general level, an interesting application of fractional equations can be
discussed for the case of an escape through a uctuating bottleneck which mimics a
molecule initially trapped in a protein cul-de-sac [“pocket”], which can only escape
through a bottleneck which uctuates in time, as drawn schematically in Fig. 8. The
standard problem for a �-correlated Gaussian noise discussed by Zwanzig [56], and
Eizenberg and Klafter [57,58] is based on the coupling of the rate equation for the
ligand concentration in the pocket, and a Langevin equation describing the uctuating
bottleneck dynamics. Thus, the concentration obeys the rate equation

dC
dt
=−K(x)C ; (50)

where the rate K(x)=kx2 is assumed to be proportional to the bottleneck cross-section.
The uctuations of the bottleneck radius x are supposed to follow the Langevin equation

dx
dt
=−�x + F(t) (51)

with the white noise term F(t). � is the decay rate of the uctuations [56]. The equilib-
rium second moment of the radius be 〈x2〉eq = �. From this approach, the deterministic
equation of the Fokker–Planck–Smoluchowski type

@C
@t
=−kx2C + �� @

@x

(
@C
@x
+
x
�
C
)

(52)

can be deduced [56] where the quantity C(x; t) is the noise-averaged concentration for
a given bottleneck radius x. In reduced coordinates [59], Eq. (52) can be rewritten in
the form

@C
@t
=
[
−�x2 + @

@x
x +

@2

@x2

]
C : (53)

Averaging C over all possible radii x gives the concentration 〈C〉 in the protein pocket.
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In analogy to the fractional di�usion and di�usion-reaction equations considered so
far, we now concentrate on a possible fractional generalisation

@C
@t
= 0D

1−
t

[
−�x2 + @

@x
x +

@2

@x2

]
C (54)

of Eq. (53). Eq. (54) corresponds to the fractional Fokker–Planck equation considered
in Refs. [13,35], with an additional term proportional to x2. The introduction of the
fractional operator removes the Markovian character from the bottleneck dynamics,
namely the dynamics becomes non-local in time. The generalisation of Eq. (53) in
terms of Eq. (54) is not unique. It is based on the observation that in the subdi�usive
fractional Fokker–Planck equations which were previously derived from kinematics
[13,37,38] and dynamics [42,43] principles, the momentary change @C=@t is brought
about by force and di�usion terms which are all acted upon by the fractional operator.
Thus, in Eq. (54), it was assumed that the contribution −�x2C also feeds on @C=@t
through the memory delay which is expressed by the fractional operator. The result
obtained below is therefore a physical model which should be checked against further
experimental investigations (see also the remarks below).
The separation ansatz C(x; t) = X (x)T (t) leads to the result

C(x; t) =
1

�
√
�

∞∑
n=0

1
2nn!

E(−�n;t)

×Hn(0)Hn
( x
�

)
exp
(
−x2

[
1
4
+

1
2�2

])
; (55)

where the eigenvalues are de�ned via �n; = (2n + 1)
√
�+ 1=4 − 1=2, and we have

� = (� + 1=4)−1=4. The Hn(x) denote the Hermite polynomials [59,60]. Integrating
Eq. (55) over x, as well as using Hn(0)=2n

√
�=�([1−n]=2) and 2F1(−n; 1=2; 1=2; a)=

(1− a)n, we arrive at

〈C〉(t) =
∞∑
n=0

(−1)n �(n+ 1=2)√
1 + �2=2�(1=2− n)

22n+1=2

(2n)!

×
(
1− 2

1 + �2=2

)n
E
(−�2n;t) : (56)

This sum converges for all t due to the observation that
∑∞

0 [2
2n�(n+1=2)=(2n)!�(1=2−

n)](1− �)n ¡∞, with the provision that 06�¡ 2: For long times t/�1=0; , the function
〈C〉(t) follows t− for  ∈ (0; 1), and decreases exponentially for  = 1. The latter
statement can easily be seen, rewriting Eq. (56) by Mehler’s summation formula to
recover Zwanzig’s original result [56,59]. In Fig. 9 we graph 〈C〉(t) for  = 1

2 , in
comparison to the standard result with = 1.
The escape problem discussed here is related to the rebinding of a ligand molecule

after dissociation from a protein, e.g., a myoglobin as discussed in Refs. [61,62]. In
fact, it is reasonable to assume that the rebinding follows the same dynamics as the
bottleneck escape sketched here. For rebinding, 〈C〉(t) describes then the concentration
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Fig. 9. Survival probability distribution of the molecule in the pocket. The solid line represents the fractional
solution for  = 1

2 , the dashed line denotes the standard result ( = 1). In the log10–log10 plot, the slow
power-law asymptotic behaviour for the fractional solution is distinct.

of ligands which have not yet rebound after the dissociation. It was shown by Gl�ockle
and Nonnenmacher in Ref. [62] that the experimental data obtained by Iben et al. [61]
can be described by a fractional relaxation equation leading to a single Mittag–Le�er
decay, to a remarkable accuracy. The above result, Eq. (56), combines a discrete,
in�nite set of Mittag–Le�er decays, and it can be shown that this result 〈C〉(t) has a
comparable numerical behaviour as the single Mittag–Le�er pattern from Ref. [62]. 4

4. Conclusions

Most physical systems, in one way or the other, involve boundary conditions, or
an external �eld causes the existence of a set of eigenvalues. In this paper the stage
was set for the modelling of such cases in terms of fractional di�usion-type equations.
The presented results show a considerably di�erent behaviour in comparison to the
corresponding Brownian cases, thus making this approach interesting for the discussion
of transport processes in complex system where anomalous di�usion or long-tailed
relaxation of modes dominate.
Solutions for the FDE (2) and the more general Eq. (44) have been derived and

discussed, imposing certain boundary value conditions upon the system. The discussion
used the fact that fractional equations are per se very similar to their Fickean coun-
terparts, except for the occurrence of the fractional operator replacing the �rst-order
time derivative. Therefore, standard methods of solution, such as the Fourier–Laplace
technique, the method of images, or the separation of variables can be applied to these
generalised equations. The examples treated above demonstrate that the fractional ap-
proach is a powerful framework for the description of anomalous transport in complex
systems, augmenting the existing toolbox of approaches such as the continuous time
random walk scheme, or the master equation framework [6,13,36].

4 It should indeed be possible to calculate the sum, Eq. (56) in a similar way as in the Markovian case, and
the result should be a single Mittag–Le�er function.
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Appendix A. The Riemann–Liouville fractional operator

In Eq. (4) we de�ned the Riemann–Liouville fractional di�erentiation of order 1−,
0¡¡ 1 through [16]

0D
1−
t W (x; t) =

1
�()

@
@t

∫ t

0
dt′

W (x; t′)
(t − t′)1− : (A.1)

Here we list some interesting properties of this fractional operator.
In general, the Riemann–Liouville fractional operator is de�ned through the operation

of the fractional integration:

0D
−
t f(t) =

1
�()

∫ t

0
dt′

f(t′)
(t − t′)1− (A.2)

and a subsequent ordinary di�erentiation, to result in de�nition (A.1). The integration
theorem of Laplace transformation can be shown to hold for fractional integration:

L{ 0D−
t f(t)}= u−f(u) ; (A.3)

an important property when dealing with fractional equations. Note that there exists
also a generalisaton of the di�erentiation theorem of the Laplace transformation in the
form

L{ 0Dpt f(t)}= upf(u)−
n−1∑
j=0

ujcj (A.4)

whereby the pseudo-initial values

cj = lim
t→0+

0D
p−1−j
t f(t) (A.5)

arise, for n¿p¿n−1. As in our calculations we start o� from the integral version (3)
of the fractional di�usion equation, we avoid this somewhat complicated calculation,
resting with Eq. (A.3).
A fundamental property of the Riemann–Liouville fractional operator is

0D
�
t t
� =

�(1 + �)
�(1 + �− �) t

�−� (A.6)

for all real �; �; especially, one �nds for the fractional di�erentiation of a constant

0D
�
t 1 =

t−�

�(1− �) : (A.7)
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For �→ n, n a natural number, the Gamma function diverges, and the standard result
dn1=dtn = 0 is recovered.

Appendix B. The Mittag–Le�er function

The Mittag–Le�er function [63] is the natural generalisation of the exponential func-
tion. It is de�ned through the inverse Laplace transform

E (−[t=�]) =L−1
{

1
u+ �−u1−

}
; (B.1)

from which the series expansion

E(−[t=�]) =
∞∑
n=0

(−[t=�])n
�(1 + n)

(B.2)

can be deduced. The asymptotic behaviour is

E(−[t=�]) ∼ ((t=�)�(1− ))−1 (B.3)

for t/�, 0¡¡ 1. Special cases of the Mittag–Le�er function are

E1(−[t=�]) = e−t=� (B.4)

and

E1=2(−[t=�]1=2) = et=� erfc([t=�]1=2) : (B.5)

We note in passing that the Mittag–Le�er function is the solution of the fractional
relaxation equation [54,55]

d�(t)
dt

=−� 0D1−t �(t) : (B.6)
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