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Generalized Huber kinetics for nonlinear rate processes in disordered systems:
Nonlinear analogs of stretched exponential
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This paper deals with one-variable nonlinear rate processes occurring in disordered systems. A general
stochastic approach is introduced for these processes based on the following assumptions. The total rate
coefficient is made up of the additive contributions of a large number of individual reaction channels. These
contributions are random functions of time and their stochastic properties are characterized by a functional
random point process. Exact analytical expressions for the time dependence of the average concentration are
derived by using a characteristic functional technique. These expressions are valid for systems with both
dynamic and static disorder and are nonlinear analogs of the general kinetic law derived by Huber@Phys. Rev.
B 31, 6070~1985!; Phys. Rev. E53, 6544~1996!# for linear rate processes in systems with static disorder. For
independent rate processes with static disorder and a self-similar distribution of reaction channels we derive a
nonlinear analog of the stretched exponential. A closed analytic expression of the nonlinear stretched expo-
nential is given in terms of Fox’sH functions. As expected, when the reaction order of the process is one, the
nonlinear kinetic law reduces to a stretched exponential with a scaling exponent characterizing the self-similar
distribution of the individual reaction channels. For nonlinear processes the tail of the averaged kinetic curve
is self-similar and obeys a scaling law with a negative power law. Surprisingly, the scaling exponent of the tail
depends only on the reaction order of the process and is independent of the scaling exponent that characterizes
the self-similar distribution of the individual channels. We examine the possibilities of experimental evaluation
of the statistical distribution of the total rate coefficient: The moments of different orders of the rate coefficient
can be evaluated from the time derivatives of the survival function.@S1063-651X~98!10906-6#

PACS number~s!: 05.40.1j, 64.60.Ak, 87.10.1e
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I. INTRODUCTION

In recent years the relaxation and reaction processes
curring in disordered systems have been studied from b
the experimental and theoretical points of view@1#. In this
field most papers focus on the experimental and theore
study of processes with linear kinetics described by stretc
exponential survival functions. There are relatively few
tempts to extend the research to the case of nonlinear
cesses@2#. For nonlinear kinetics in random media exact th
oretical results are scarce; most studies rely on nume
simulations. For linear processes in disordered systems a
oretical model was suggested by Huber in 1985@3#. Based
on a careful study of different linear rate processes, he p
posed the kinetic law

^ l ~ t !&5expH 2E
0

`

r~k!@12exp~2kt!#dkJ , ~1!

where^ l (t)& is the average relaxation~survival! function of
the process andr(k) is the average density of relaxatio
channels with an individual relaxation rate betweenk andk
1dk. In particular, if the distribution of individual rates i
self-similar and obeys a scaling relation with a negat
power law

*Present address: Department of Chemical Physics, Universi
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r~k!dk;const3k2~11b!dk with 1.b.0, ~2!

which is consistent with the general ideas of self-similar
of disordered systems reported in the literature, Hube
equation~1! leads to a stretched exponential kinetic law

^ l ~ t !&5exp$2~Vt !b%. ~3!

More recently it has been shown that Huber’s equation~1! is
exact for a Poissonian distribution of independent chann
@4#. Moreover, this equation also holds beyond the range
validity of the Poissonian distribution: It emerges as a u
versal scaling law for a uniform random distribution of rea
tion channels characterized by nonintermittent fluctuatio
@5#. This result is consistent with the idea that Huber’s eq
tion ~1! and the stretched exponential relaxation law~2! de-
rived from it can be generated by a central limit behavior
the Lévy type that expresses the contribution of a large nu
ber of weakly connected relaxation channels@6–8#.

Huber’s law~1! has been extended for systems with d
namical disorder@4,5,9#. By assuming that each individua
relaxation rate attached to a reaction channel is a rand
function obeying Poissonian statistics, it has been shown

^ l ~ t !&5expH 2
/
R@k~ t8!#D@k~ t8!#

3F12expS 2E
0

t

k~ t8!dt8D G J , ~4!

where, due to dynamical disorder, the relaxation rate co
of
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sponding to an individual relaxation channelk5k(t8), t
>t8>0, is a random function of time;R@k(t8)#D@k(t8)# is
an average density of channels characterized by diffe
random functionsk5k(t8), t>t8>0; D@k(t8)# is a suitable
integration measure over the space of functionsk5k(t8), t
>t8>0; and/ stands for the operation of path integratio
Just as in the case of Eq.~2!, it has been shown that Eq.~4!
emerges as a universal scaling law for a uniform rand
distribution of reaction channels characterized by nonin
mittent fluctuations.

The theoretical studies of Huber’s relaxation equation a
of its generalizations have been motivated mainly by
analysis of physical relaxation processes occurring in dis
dered systems. However, these equations can be also ap
to chemical reactions in disordered systems provided the
netics of the process is of first order. Such kinetic syste
are important, but the kinetics of most chemical reactions
nonlinear. The purpose of this paper is to present a sim
approach for the time evolution of a chemical process of
type

nX→~products!, ~5!

occurring in a disordered system and for which the kinetic
nonlinear. Although our present research is mainly motiva
ro
nt
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by studies of chemical kinetics, the results presented in
paper are also of interest for the study of nonlinear phys
processes in disordered media.

II. NONLINEAR RATE PROCESSES
WITH DYNAMICAL DISORDER

In analogy to similar approaches developed in the lite
ture in the case of linear kinetics, we assume that the che
cal reaction~5! is the result of the contribution of a larg
number of different reaction channels. Each channel is ch
acterized by a different rate coefficientku(t), u51,2,...,
which is a random function of time. The total rate coefficie
of the processW(t) is the sum of the individual ratesku(t),
u51,2,...,

W~ t !5(
u

ku~ t !. ~6!

Formally, the stochastic properties of an ensemble ofN re-
action channels can be described by generalizing the form
ism of random point processes suggested by Ramakrish
@10#. We introduce a set of grand canonical functional pro
ability densities
Q0 ,Q1@k1~ t !#D@k1~ t !#,QN@k1~ t !,...,kN~ t !#D@k1~ t !#¯D@kN~ t !#¯ , ~7!

with the normalization condition

Q01 (
N51

`
1

N! /
¯

/
QN@k1~ t !,...,kN~ t !#D@k1~ t !#¯D@kN~ t !#51 ~8!

and the characteristic functional

G†Z@k~ t !#‡5Q01 (
N51

`
1

N! /
¯

/
QN@k1~ t !,...,kN~ t !#Z@k1~ t !#¯Z@kN~ t !#D@k1~ t !#¯D@kN~ t !#, ~9!
l-

the
d

whereZ@k(t)# is a suitable test functional.
For a given realization of the total rate coefficientW(t)

the differential kinetic equation attached to the chemical p
cess~5! is

dc~ t !/dt52W~ t !@c~ t !#n with c~ t50!5c0 , ~10!

wherec(t) is the concentration of the substanceX at timet.
The solution of the differential equation~9! for a given real-
ization of the total rate coefficientW(t8), t>t8>0, can be
expressed as

c@ t;W~ t8!#

c0
5H 11~n21!~c0!n21E

0

t

W~ t8!dt8J 21/~n21!

5
1

GS 1

n21D E
0

`

z1/~n21!21 expH 2zF11~n21!
-
3~c0!n21E

0

t

W~ t8!dt8G J dz, ~11!

where G(x)5*0
`zx21 exp(2z)dz, x.0, is the complete

gamma function. In Eq.~10! we have made use of the equa
ity

~11y!2a5
1

G~a!
E

0

`

za21exp@2~11y!z#dz. ~12!

The macroscopic observable is the average value of
survival functionl (t) of speciesX, which can be expresse
as the ratio between the average value^c(t)& of the concen-
tration c(t) of the substanceX and the initial concentration
c(t50)5c0 for t50,

^ l ~ t !&5^c~ t !&/c05
/

c@ t;W~ t8!#

c0
P@W~ t8!#D@W~ t8!#,

~13!
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where

P@W~ t8!#D@W~ t8!# with
/
P@W~ t8!#D@W~ t8!#51

~14!

is the probability density functional of the total rate coef
cient W(t8), t>t8>0. From Eqs.~11!–~14! we notice that
the average survival function̂l (t)& can be expressed i
terms of the characteristic functional

B@Y~ t8!#5K expF i E
0

t

W~ t8!Y~ t8!dt8G L
5
/

expF iE
0

t

W~ t8!Y~ t8!dt8GP@W~ t8!#D@W~ t8!#

~15!

of the probability density functionalP@W(t8)#D@W(t8)#.
We have
^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21exp~2z!

3B@ iY~ t8!52z~n21!~c0!n21u~ t !#dz,

~16!

whereu(t) is the usual Heaviside step function.
In principle, there are two different ways of computin

the average survival function from Eq.~17!. The first ap-
proach is a generalization of the ‘‘random rate approac
used in the literature for chemical processes with linear
netics. We assume that the stochastic properties of the
rate coefficient are known and are expressed in terms of
cumulants^^W1(t1)&&, ^^W(t1)W(t2)&&,... . We represent
the characteristic functionalB@Y(t8)# in Eq. ~16! by a cu-
mulant expansion, resulting in
nics.

ch

ctionals
^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21 expH (
m51

`
1

m!
@2dm12z~n21!~c0!n21#mE

0

t

¯E
0

t

^^W~ t18!¯W~ tm8 !&&dt18¯dtm8 J dz.

~17!

The expression~17! for the average survival function is similar to the virial expansion in equilibrium statistical mecha
Similar expansions have been suggested for reactions with linear kinetics occurring in disordered systems.

The second method for evaluating the average survival function^ l (t)& is a generalization of the random channel approa
suggested in the literature for linear processes. We try to evaluate the dynamical average in Eq.~13! in terms of the grand
canonical probability functionals~7! or in terms of the corresponding characteristic functionalG†Z@w(t)#‡ defined by Eq.~9!.
We notice thatB@Y(t8)# can be expressed as a grand canonical average

B@Y~ t8!#5K expS i E
0

t

W~ t8!Y~ t8!dt8D L
5Q01 (

m51

`
1

m! /
¯

/
expS i (

u51

m E
0

t

ku~ t8!Y~ t8!dt8D
3Qm@w1~ t !,...,wm~ t !#Z@w1~ t !#¯Z@wm~ t !#D@w1~ t !#¯D@wm~ t !#

5GFZ@k~ t !#5expS i E
0

t

k~ t8!Y~ t8!dt8D G . ~18!

By combining Eqs.~16! and ~18! we arrive at

^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21exp~2z!GFZ@k~ t !#5expS 2z~n21!~c0!n21E
0

t

k~ t8!dt8D Gdz. ~19!

In particular, if the different reaction channels are statistically independent, the grand canonical probability density fun
defined by Eq.~7! obey Poissonian statistics and are given by

Q05expS 2
/

r@k~ t !#D@k~ t !# D , ~20!

QN@k1~ t !,...,kN~ t !#D@k1~ t !#¯D@kN~ t !#5expS 2
/
R@k~ t !#D@k~ t !# DR@k1~ t !#D@k1~ t !#¯R@kN~ t !#D@kN~ t !#. ~21!
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The corresponding characteristic functionalG†Z@k(t)#‡ is ex-
ponential,

G†Z@k~ t !#‡5expS 2
/

$12Z@k~ t !#%R@k~ t !#D@k~ t !# D ,

~22!

and Eq.~19! leads to

^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21exp~2z!

3expH 2
/
R@k~ t !#D@k~ t !#

3F12expS 2z~n21!~c0!n21E
0

t

k~ t8!dt8D G J dz.

~23!

Equation~23! is the nonlinear analog of the Huber equati
~4!.

III. STATIC DISORDER AND GENERALIZED
HUBER KINETICS

For illustration, in the following we consider a particula
case of systems with static disorder. For such system
fluctuation, once it occurs, is frozen and lasts forever.
using the random rate approach, it follows that the total r
coefficient W is a random variable selected from a giv
probability distributionP(W)dW. In terms of this probabil-
ity distribution the probability density functiona
P@W(t8)#D@W(t8)# can be expressed as the average of
delta functionalD@W(t)2W8#D@W(t8)#. We have

P@W~ t8!#D@W~ t8!#5E
0

`

dW8P~W8!

3D@W~ t8!2W8#D@W~ t8!#.

~24!

Similarly, in terms of the random channel approach,
individual channels with a rate coefficient betweenk and k
1dk are distributed according to an average density func
a
y
te

e

e

n

r(k)dk. The average functional density of channe
R@k(t8)#D@k(t8)# can be expressed in terms of the dens
function r(k)dk by a relationship similar to Eq.~24!:

R@k~ t !#D@k~ t !#5E
0

`

dk8P~k8!D@k~ t !2k8#D@k~ t !#.

~25!

For static disorder the expressions~16!, ~17!, and~19! for the
average kinetic curvêl (t)& turn into a simpler form. We
have

^ l ~ t !&5
1

GS 1

n21
D E

0

`

z1/~n21!21exp~2z!

3B@ iy52z~n21!~c0!n21t#dz

5
1

GS 1

n21
D E

0

`

z1/~n21!21expH (
m51

` 1

m!

3@2dm12z~n21!~c0!n21#m^^Wm&&tmJ dz

~26!

and

^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21 exp~2z!

3C$Z~k!5exp@2z~n21!~c0!n21kt#%dz,

~27!

where

B~y!5E
0

`

exp~ iWy!P~W!dW ~28!

is the Fourier transform of the probability distributio
P(W)dW, ^^W&&,^^W2&&,... are thecumulants of this distri-
bution, and
C@Z~k!] 5Q01 (
N51

`
1

N! E0

`

¯E
0

`

QN~k1 ,...,kN!Z~k1!¯Z~kN!dk1¯dkN ~29!
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is the characteristic functional attached to the set of ‘‘stat
grand canonical distributions

Q0 ,...,QN~k1 ,k2, . . . !dk1dk2 . . .

with Q01 (
N51

`
1

N! E0

`

¯E
0

`

QN~k1 ,...,kN!dk1¯dkN51,

~30!

which describe the fluctuations of the individual values
the rate coefficients for a system with static disorder.

The random-rate and random-channel description of
process are related to each other by means of a relation
between the characteristic functionalC@Z(k)], which de-
n
in

o

te

d

’

f

e
hip

scribes the statistical properties of the individual chann
and the Fourier transformB(y) of the probability distribu-
tion P(W)dW of the total rate coefficientW:

B~y!5C@Z~k!5exp~ iky!]. ~31!

Equation~31! can be derived in the same way as Eq.~18!.

IV. NONLINEAR ANALOGS OF THE STRETCHED
EXPONENTIAL

Systems with static disorder for which the different rea
tion channels are independent deserve special attention
this case the grand canonical probability distributio
Q0 ,...,QN(k1 ,k2, . . . )dk1dk2 ,... arePoissonian,
Q05expS 2E
0

`

r~k!dkD ,

QN~k1 ,...,kN!dk1¯dkN5expS 2E
0

`

r~k!dkD r~k1!dk1¯r~kN!dkN , ~32!
o-

e

a-

is-
and the characteristic functionalC@Z(k)# is exponential,

C@Z~k!] 5expH E
0

`

@Z~k!21#r~k!dkJ . ~33!

By combining Eqs.~27! and ~33! we arrive at

^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21

3expH 2z2E
0

`

r~k!$12exp@2z~n21!

3~c0!n21kt#%dkJ dz. ~34!

Equation~34! is the nonlinear analog of Huber’s relaxatio
equation~1! for systems with static disorder. As expected,
the limit n→1, Eq. ~34! reduces to Eq.~4!.

Following Huber, we assume a self-similar distribution
individual rates of the type~2!,

r~k!dk;@G~12b!#21Vbk2~11b!dk, ~35!

whereV is a constant with the physical dimension of a ra
coefficient for the nonlinear chemical process~5!. In Eq.~35!
the proportionality constant was determined from the con
tion that in the limit n→1, Eqs.~34! and ~35! lead to the
stretched exponential~2!.

By inserting Eq.~35! into Eq. ~34! and carrying out the
integral overk we arrive at
f

i-

^ l ~ t !&5
1

GS 1

n21D E
0

`

z1/~n21!21exp$2z2@z~n21!

3~c0!n21Vt#b%dz. ~36!

Equation~36! is the nonlinear analog of the stretched exp
nential law ~3!. It is easy to check that, in the limitn→1,
Eq. ~36! reduces to Eq.~1!. A simple way of proving
this is to expand in Eq.~36! the exponential term
exp$2@z(n21)(c0)

n21Vt#b% in a Taylor series, integrate th
resulting equation term by term, and pass to the limitn
→1. By collecting the different terms of the resulting equ
tion we arrive at Eq.~3!.

By following a common approach in the theory of stat
tical fractals@13#, the integral in Eq.~36! can be expressed in
terms of the FoxH functions. We can rewrite Eq.~36! by
substitutingu5z(c0)n21Vt, resulting in

^ l ~ t !&5
„~c0!n21Vt…21/~n21!

GS 1

n21D
3E

0

`

expF2
u

~c0!n21Vt Gu1/~n21!21

3exp$2@~n21!u#b%du, ~37!

which can be viewed as a Laplace transform fromu to the
1/(c0)n21Vt space:

^ l ~ t !&5
@~c0!n21Vt#21/~n21!

G@1/~n21!#
L„u1/~n21!21

3exp$2@~n21!u#b%;1/~c0!n21Vt…. ~38!
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To evaluate this transform we express the original funct
in terms of a Fox function as

u1/~n21!21exp$2@~n21!u#b%

5
~n21!~n22!/~n21!

b
H0,1

1,0F ~n21!uUS 22n

b~n21!
,

1

b D G ,
~39!

from which we can calculate the Laplace transform@13#

^ l ~ t !&5
~n21!~22n!/~n21!

bG@1/~n21!#
@~c0!n21Vt#~22n!/~n21!

3H1,1
1,1F ~n21!~c0!n21VtU ~0,1!

S 22n

b~n21!
,

1

b D G .

~40!

This exact analytical representation of the nonline
stretched exponential law~36! can be used to investigate th
asymptotic behavior of the process for long times. We m
use of a formula given by Braaksma@14#,

Hp,q
m,n~z!;( Res@x~s!zs# as uzu→`. ~41!

In Eq. ~41! the residues have to be taken in the pointss
5(aj212n)/Aj , where j 51,...,n. The meaning of the
symbols are given in the Appendix.

In our case Eq.~41! is given by
am
s

h

n

r

e

H1,1
1,1F @~c0!n51Vt#U ~0,1!

S 22n

b~n21!
,

1

b D G
; (

m50

`

ResH G~11s!GF 22n

b~n21!
2

s

b G
3@~c0!n21Vt#sJ U

s5212m

. ~42!

By evaluating the first residues we obtain

^ l ~ t !&5
1

bG@1/~n21!#
@~n21!~c0!n21Vt#21/~n21!

3H GS 1

b~n21! D2@~c0!n21Vt#21GS 11~n21!

b~n21! D
1@~c0!n21Vt#22GS 112~n21!

b~n21! D
1O$@~c0!n21Vt#23%J , ~43!

whereO is the Landau symbol. The asymptotic expansi
~43! is reminiscent of the standard geometric series exp
sion for 1/(11x). This analogy is also reflected in the ide
tity

~11y!2a5
1

G~a!
H1,1

1,1FyU~12a,1!

~1,0! G . ~44!

An alternative expression of the asymptotic behavior
the survival function for long times can be derived by e
pressing the exponential in Eq.~36! as a product of two
exponentials, expanding exp(2z) in a McLaurin series, and
integrating the resulting expression term by term. We obt
^ l ~ t !&5
@~n21!~c0!n21Vt#21/~n21!

bG„1/~n21!… (
m50

`
@2~n21!~c0!n21Vt#2m

m!
GS m1

1

b~n21! D as ~n21!~c0!n21Vt→`. ~45!
he
are

ctor
or-
is

der
r
al
der
e
f
r-
As expected, both asymptotic expansions lead to the s
result. For long times the average survival function ha
long tail of the negative power law type:

^ l ~ t !&;
G„1/b~n21!…

bG„1/~n21!…
@~n21!~c0!n21Vt#21/~n21!

as ~n21!~c0!n21Vt→`. ~46!

It is interesting to compare the asymptotic law~46! with the
integral kinetic law for a system without disorder for whic

r~k!5d~k2V!. ~47!

In this case the general relation~34! reduces to

^ l ~ t !&5@11~n21!~c0!n21Vt#21/~n21!
e
a

;@~n21!~c0!n21Vt#21/~n21!

as ~n21!~c0!n21Vt→`, ~48!

that is, for nonlinear kinetics the shape of the tail of t
kinetic curve and the corresponding scaling exponents
identical for ordered and disordered systems. The only fa
in which the influence of disorder shows up is in the prop
tionality coefficients of the tail; for disordered systems th
proportionality coefficient depends both on the reaction or
and on the scaling exponentb expressing the self-simila
properties of the statistical distribution of the individu
channels. In contrast, for a linear process with static disor
the scaling exponentb is the main parameter determining th
shape of the tail of the kinetic curve. The independence ob
of the scaling exponent of the tail for a reaction order diffe
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ent from one is an unexpected nonlinear effect for which
do not have a simple physical explanation.

V. RATE STATISTICS AND EXPERIMENTAL DATA

For linear rate processes occurring in disordered syst
an important issue is the spectral kinetic analysis@11#. Given
an experimental kinetic curvêl (t)&, it is possible to evalu-
ate the statistical properties of the total rate coefficientW,
expressed by the distributionP(W)dW or the statistical
properties of the contributionk of an individual reaction
channel, expressed by the average density of statesr(k)dk.
The spectral kinetic analysis can be easily extended to n
linear kinetics provided the value of the reaction order of
process is known.

We start our study of the nonlinear kinetic spectral ana
sis by establishing the relationships between the probab
distribution P(W)dW of the total rate coefficient and th
average density of statesr(k)dk attached to an individua
reaction channel. We restrict our analysis to the case of
dependent reaction channels obeying Poissonian statis
By combining Eqs.~31! and ~33! we arrive at the following
expression for the Fourier transformB(y) of the probability
P(W)dW:

B~y!5expH E
0

`

@exp~ iky!21#r~k!dkJ , ~49!

from which, by performing an inverse Fourier transform a
passing from complex exponential to trigonometric fun
tions, we obtain

P~W!5
1

2p E
2`

1`

expH 2 iyW1E
0

`

@exp~ iky!21#

3r~k!dkJ dy

5
1

p E
0

`

expH 2E
0

`

r~k!@12cos~ky!#dkJ
3cosH yW1E

0

`

r~k!sin~ky!dkJ dy. ~50!

In particular, if the distribution of reaction channels is se
similar and the average density of statesr(k)dk obeys the
power law~35!, the probability distributionP(W)dW of the
total rate coefficient can be evaluated from Eq.~50! by in-
serting Eq.~35! and evaluating the integrals overk,

P~W!5
1

p E
0

`

expH 2~yV!b cosS pb

2 D J
3cosH yW1~yV!bsinS pb

2 D J dy. ~51!

The distribution~51! corresponds to the nonlinear genera
zation of the stretched exponential given by Eqs.~36! and
~40!.
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To express the average density of channelsr(k)dk in
terms of the probability distributionP(W)dW we express
Eq. ~49! in the form

E
0

`

exp~ ikW!P~W!dW5expH E
0

`

@exp~ iky!21#r~k!dkJ .

~52!

Since the total rate coefficientW is a non-negative random
variable, in Eq.~52! we can formally replace the Fourie
transformation by a Laplace transformation. We introdu
the Laplace variables52 ik and take the logarithm of the
resulting equation

2 lnH E
0

`

exp~2sW!P~W!dWJ
5E

0

`

@12exp~2sk!#r~k!dk. ~53!

Now we differentiate Eq.~53! term by term with respect to
s, resulting in

E
0

`

exp~2sW!WP~W!dW5F E
0

`

exp~2sW!P~W!dWG
3F E

0

`

exp~2sk!kr~k!dkG .
~54!

By applying the inverse Laplace transform to Eq.~54! we
arrive at a linear integral equation for the average density
statesr(k)dk,

E
0

W

kr~k!P~W2k!dk5WP~W!. ~55!

The solution of Eq.~55! can be represented as an inver
Laplace transform

r~k!5
1

2p ik E
c2 i`

c1 i`H E
0

`

exp~2sW!WP~W!dW

E
0

`

exp~2sW!P~W!dW
J

3exp~ks!ds. ~56!

A remarkable property of Eqs.~49!–~56! is that they are
independent of the value of the reaction ordern; it follows
that they must have exactly the same form both for linear
for nonlinear kinetics. We notice that Eqs.~50!, ~51!, and
~56! have already been derived in the literature for the p
ticular case of linear kinetics, by means of a method tha
different from the one used here@12#.

If the reaction ordern of the process, the initial concen
tration c0 , and the survival function̂l (t)& are known, then
at least in principle the distributionP(W)dW of the total rate
coefficient can be evaluated from experimental data. Fr
Eqs.~26! and ~28! we obtain
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^ l ~ t !&5E
0

` P~W!dW

$11~n21!~c0!n21Wt%1/~n21! . ~57!

Equation~57! is a linear integral equation for the distributio
P(W)dW of the total rate coefficient. This integral equatio
can be transformed, through discretization, into a linear m
trix equation that can be solved numerically.

We notice that the positive moments of the total rate
efficient

^Wm&5E
0

`

WmP~W!dW, m51,2, . . . , ~58!

can be evaluated from the time derivatives of the aver
survival function^ l (t)&. By differentiating Eq.~57! m times
with respect tot and settingt50 we get

^Wm&5@2~n21!~c0!n21#2m

3

GS m1
1

n21D
GS 1

n21D
dm

dtm
^ l ~ t !&U

t50

. ~59!

VI. CONCLUSIONS

In this paper we have suggested a statistical theory
one-variable nonlinear rate processes in disordered syst
By using the method of characteristic functionals combin
with a functional generalization of the theory of rando
point processes we have derived analytical expressions o
averaged survival functions for both static and dynami
disorder. The theory has been applied to the particular c
of a self-similar distribution of independent reaction cha
nels obeying Poissonian statistics. In this particular case
have derived a nonlinear generalization of the well-kno
stretched exponential kinetic law. This nonlinear stretch
exponential can be expressed analytically in terms of the
functions. We have investigated the possibilities of exte
ing the spectral kinetic analysis to nonlinear processes. In
particular case of independent processes with static diso
we have derived a set of relations between the probab
distribution of the total rate coefficient of the process and
average density of states of the individual rates correspo
ing to the different reaction channels. These relations m
serve as a basis for extracting information about the local
global rate statistics from the experimental data.

In the particular case of linear rate processes with stati
dynamical disorder it has been shown in the literature t
ge
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the kinetic behavior of the Huber type emerges as a unive
behavior in the limit of a large number of reaction chann
with nonintermittent fluctuations. In addition,
renormalization-group approach has been used to show
for intermittent fluctuations a more complicated kinetic la
emerges that includes the Huber kinetic law as a partic
case. In our future research we intend to investigate the p
sibility to extend these results to the more complex case
nonlinear rate processes. Another interesting problem is
generalization for nonlinear processes of the method s
gested by Allinger and Blumen for the study of linear ra
processes with dynamic disorder@16#. Work on these prob-
lems is in progress.
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APPENDIX: FOX’S H FUNCTIONS

In 1961 Fox defined theH functions in his studies of
symmetrical Fourier kernels as Mellin-Barnes path integr
in the complex plane~see, e.g.,@13–15#!

Hpq
mn~x!5Hpq

mnFxU~ap ,Ap!

~bq ,Bq! G
5Hpq

mnFxU~a1 ,A1!,~a2 ,A2!,...,~ap ,Ap!

~b1 ,B1!,~b2 ,B2!,...,~bq ,Bq! G
5

1

2p i EL
ds x~s!xs, ~A1!

with the integral density

x~s!5

)
1

m

G~bj2Bjs!)
1

G~12aj1Ajs!

)
m11

q

G~12bj1Bjs!)
n11

ṗ

G~aj2Ajs!

. ~A2!

The constraints for the parameters occurring in Eq.~38! are
given in Ref. @15#. Note that the path integral in Eq.~37!
represents just the inverse Mellin transform of the ker
x(s).
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