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Fractional diffusion and Lévy stable processes
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Anomalous diffusion in which the mean square distance between diffusing quantities increases faster than
linearly in ‘‘time’’ has been observed in all manner of physical and biological systems from macroscopic
surface growth to DNA sequences. Herein we relate the cause of this nondiffusive behavior to the statistical
properties of an underlying process using an exact statistical model. This model is a simple two-state process
with long-time correlations and is shown to produce a random walk described by an exact fractional diffusion
equation. Fractional diffusion equations describe anomalous transport and are shown to have exact solutions in
terms of Fox functions, including Le´vy a-stable processes in the superdiffusive domain(1/2,H,1).
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PACS number~s!: 05.40.1j, 05.45.1b, 05.60.1w
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I. INTRODUCTION

It is not quite two decades since Mandelbrot introduc
the term fractal into the scientists’ lexicon. This term to
cognizance of the fact that there was a large class of ph
cal, biological, and physiological phenomena that traditio
statistical physics was not equipped to describe, much les
explain. The typical features of these phenomena is that
are complex, nonlinear, and appear to fluctuate randoml
space and/or time. The spectral properties of such syst
rather than being dominated by a narrow band of frequ
cies, spread themselves into a broadband spectrum, so
correlations persist from very-short- to very-long-tim
scales; see, e.g.,@1#. Such spectra, when they are inver
power law, indicate fractal random time series and could
generated either by colored noise or by the chaotic solut
to low-dimensional deterministic nonlinear dynamical equ
tions. Of course, chaotic dynamical systems often have
ponentially decaying rather than inverse power-law spec
On the other hand, the statistics of the fluctuations are o
found to deviate strongly from that normally expected us
the central limit theorem~CLT!; for example, the second
moment diverges. A generalized version of the CLT yie
Lévy stable distributions to describe the statistical fluctu
tions in these systems; see, for example,@2#. Subsequently, it
has been found that both the inverse power-law spectra
the Lévy statistical distribution are a consequence of scal
and fractals; see@3#. Herein we restrict our discussion o
dynamical systems to those that can be characterized b
ther an inverse power-law spectrum, Le´vy statistics, or both.

The understanding of these phenomena, and some p
ous ones as well, has only come about through the deve
ment and implementation of alternative modeling strateg
For example, the Maxwell-Zener standard constitutive eq
tions relating stress to strain have been generalized to f
tional order differential equations in time; cf.@4# and @5#.
Glöckle and Nonnenmacher@6# pointed out some relations o
fractional differential equations to continuous-time rando
walks ~CTRW’s! of trapping type leading to the identifica
551063-651X/97/55~1!/99~8!/$10.00
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tion of the fractional order parameter with the index of t
inverse power-law waiting-time distribution function and th
Lévy index. Another example is anomalous diffusion, whe
the anomaly can be either the time dependence of the v
ance of a process, i.e., the variance;t2H, wheret is the time
and HÞ1/2, or the statistics of the variate. The form
anomaly is often described by fractional Brownian motio
whereas the latter uses Le´vy stable distributions. Both thes
types of anomalies arise in the modeling of DNA sequen
~see for example,@7#! and in a variety of other biomedica
phenomena, including interbeat interval distribution of ma
malian heartbeats and ion-channel gating; see@8# for an
overview.

Herein we develop the exact equation of evolution fo
dichotomous process having correlated fluctuations. In S
II we argue that the general equation reduces to normal
fusion when the microscopic correlation time scale is fini
However, when there is no separation of the microsco
from the macroscopic time scales the diffusion is anomalo
In Sec. III we examine anomalous diffusion using an inve
power-law correlation function and demonstrate that the e
lution of such a process can be represented by a fracti
diffusion equation. Seshadri and West@9# showed that a
Lévy stable process is described by a fractional diffus
equation. We show that anomalous diffusion, where the v
ance does not increase linearly with time, is not described
fractional Brownian motion, that is, the statistics are n
Gaussian. A method for solving such fractional diffusio
equations using Fox functions is presented in Sec. IV. T
Fox function method has been championed in relaxation p
cesses by Glo¨ckle and Nonnenmacher@6# and was intro-
duced into the study of anomalous diffusion processes
Schneider@10#, where he derived a Fox function represen
tion of Lévy stable distribution functions. Explicit solution
of fractional wave and diffusion equations were given
Schneider and Wyss@11# and, more recently, by Metzle
et al. @12# in terms of Fox functions. The fractional diffusio
equation derived herein is formally different from that d
rived by Schneider@10# and is shown to reduce to the eve
99 © 1997 The American Physical Society
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100 55WEST, GRIGOLINI, METZLER, AND NONNENMACHER
earlier integro-differential equation for Le´vy processes de-
veloped by Seshadri and West@9#. In Sec. V we apply this
method to our model process and show that dichotomo
random fluctuations with an inverse power-law correlatio
function can have Le´vy statistics. In Sec. VI we draw some
general conclusions.

II. TWO-STATE MODEL

We consider one of the simplest of stochastic differenti
equations, that being

dx~ t !

dt
5j~ t !, ~1!

wherej(t) is a two-state process taking the values6w and
is depicted in Fig. 1. Ifw(x,j,t)dxdj is the probability that
the dynamical variablesx(t) and j(t) have values in the
intervals (x,x1dx) and (j,j1dj) in general, then the
phase-space equation of evolution corresponding to the
namical equation~1! is given by

]

]t
w~x,j,t !5S 2 ĵ

]

]x
1ĜDw~x,j,t !. ~2!

Here Ĝ is an operator characterizing the dynamics of thej
process andĵ is an operator having the eigenvalues6w. The
underlying process generatingj(t) is not known and need
not be specified except insofar as it provides the appropri
fluctuations driving Eq.~1!. An example of such a generator

FIG. 1. Two-dimensional random walk given by~1! with an
inverse power-law correlation function~15!, depicted withw51
and the power-law indexb50.5. Note the clustering of the walk so
typical of a Lévy process.
s

l
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is the chaotic map used by Allegriniet al. @7# to model DNA
sequences with long-range correlations.

The reduced probability density for the random walk va
able x(t) is determined by the projection operatorP25P
such that

s0~x,t ![Pw~x,j,t !. ~3!

The orthogonal complement to this reduced probability
determined by

s1~x,t ![Qw~x,j,t !, ~4!

whereP1Q51. Using these two distributions allows us
partition Eq.~2! into the two equations

]s0~x,t !

]t
52Pĵ

]s1~x,t !

]x
, ~5a!

]s1~x,t !

]t
52Qĵ

]s0~x,t !

]x
1QĜs1~x,t !, ~5b!

where we have used the operator relationsPĜ5ĜP50, in-
dicating that the dynamical operator for the velocity fluctu
tions couples only to the excited states1(x,t) and not to the
ground states0(x,t). On the other hand, the operatorĵ con-
nectss1(x,t) to s0(x,t) and has no diagonal matrix ele
ments so thatQĵQ5PĵP50. Thus we can integrate Eq
~5b! to obtain

s1~x,t !52E
0

t

Qe2Ĝ~ t82t !Q
]s0~x,t !

]x
dt8, ~6!

which when inserted into Eq.~5a! yields

]s0~x,t !

]t
5E

0

t

PĵQe2Ĝ~ t82t !Qĵ
]2s0~x,t8!

]x2
dt8. ~7!

It is a simple matter to prove that the coefficient of the s
ond derivative in the integrand is just the two-time corre
tion function

PĵQe2Ĝ~ t82t !Qĵ[^j~ t !j~ t8!&, ~8!

so that Eq.~7! can be rewritten

]s0~x,t !

]t
5E

0

t

^j~ t !j~ t8!&
]2s0~x,t8!

]x2
dt8. ~9!

Note that Eq.~9! is an exact equation of evolution for a
two-state process having the correlation function given
Eq. ~8!.

Normal diffusion is a natural consequence of the ex
ence of a microscopic time scale, defined by

t5E
0

`^j~0!j~ t8!&

^j2&
dt8. ~10!

If the correlation function ^j(0)j(t8)& decays quickly
enough to maket finite, we can explore the random-wal
process for timest very large compared tot. The time scale
separation between the random-walk process and the ve
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55 101FRACTIONAL DIFFUSION AND LÉVY STABLE PROCESSES
ity fluctuations allows the CLT to work, thereby reaching
Gaussian diffusion process for the two-state model. On
other hand, whent→` there is no time scale separatio
between the macroscopic~diffusion! and the microscopic
process~fluctuations of the velocity variablej) and the re-
sulting statistics are not Gaussian in general. In the next
tion we turn our attention to a realization of such a proce

III. FRACTIONAL DIFFUSION EQUATION

It was not stressed in the preceding section, so let us d
now, and emphasize that Eq.~8! implies that the two-point
correlation^j(t8)j(t9)& depends only on the time differenc
ut82t9u and the process is therefore stationary. Let us in
duce the equilibrium correlation functionFj(t) defined by

Fj~ t ![
^j~0!j~ t !&

^j2&
, ~11!

which is the function used in the definition of the micr
scopic time rate~10!. Geiselet al. @13# established a connec
tion between the stationary correlation function~11! and an-
other important statistical function, the waiting-tim
distributionc(t) used in CTRW models. This latter functio
determines the probability thatj(t) has made a transition
between states in a timet. In the specific case where th
variablej is a dichotomous process, as in the case of inte
here, this connection betweenFj(t) andc(t) is exact and is
given by

Fj~ t !5
* t

`~ t82t !c~ t8!dt8

*0
`t8c~ t8!dt8

. ~12!

For this relation we consider the case of an inverse pow
law waiting-time distribution

c~ t !;
1

t11g , g.0 ~13!

with

1,g,2. ~14!

Inserting Eq.~13! into Eq. ~12!, the restriction on the index
~14! yields

Fj~ t !;
A

tb
, ~15!

with

0,b,1, ~16!

since

b5g21. ~17!

Thus we see that the functional formc(t) ~13! with the
index in the range~14! generates the inverse power-law b
havior ofFj(t) and hence the breakdown of the condition
a finite microscopic time scalet ~10! for normal diffusion.

The form of the two-point correlation function~15! allows
us to rewrite Eq.~9! in the form
e

c-
s.

so

-

st

r-

f

]s0~x,t !

]t
5E

0

t

^j2&
A

~ t2t8!b

]2s0~x,t8!

]x2
dt8. ~18!

Introducing the Riemann-Liouville fractional derivative i
time

]b f ~ t !

]tb
[

1

G~12b!
E
0

t f ~ t8!dt8

~ t2t8!b , ~19!

we can rewrite Eq.~18! as the fractional diffusion equation

]s0~x,t !

]t
5C

]2

]x2
]bs0~x,t !

]tb
, ~20!

whereC is the appropriate collection of constants. Equati
~20! was previously obtained by Compte@14# using a CTRW
formalism that summarized the research of a number of
vestigators who had obtained equivalent results for fac
able space and time transition probabilities with inve
power-law memory functions, see for example,@15# and@6#.
The form of the fractional diffusion equation~20! is not very
useful for practical calculations, however, so we now tu
our attention to how one actually solves equations expres
in terms of fractional derivatives.

IV. SOLUTIONS TO FRACTIONAL DIFFUSION
EQUATIONS

The most direct way to solve fractional diffusion equ
tions is by means of FoxH functions. The Fox functions
arise as a consequence of applying Laplace-Mellin transf
techniques to fractional operator equations. Let us brie
review this relation following Glo¨ckle and Nonnenmache
@6#. The fractional Riemann-Liouville operator is defined b

aDt
2m f ~ t !5E

a

t~ t2t8!m21

G~m!
f ~ t8!dt8 ~21!

for m.0, which represents a fractional integration. F
n52m.0 the fractional differential operatoraDt

n is consid-
ered to be composed of a fractional integration of the or
n2n (n21,n<n) followed by an ordinary differentiation
of the ordern, i.e.,

aDt
n f ~ t !5S ddtD

n

aDt
n2nf ~ t !. ~22!

The fractional derivatives and integrals of a Fox function a
calculated by formally manipulating the parameters in
H function as

0Dz
nH zaHp,q

m,nS ~az!bU~aj ,a j !

~bj ,b j !
D J

5za2nHp11,q11
m,n11 S ~az!bU ~2a,b!,~aj ,a j !

~bj ,b j !,~n2a,b!
D ~23!

for arbitrary n, for a,b.0 and a1bmin(bj /bj).21
(1< j<m). See the Appendix for definitions and some fo
mal properties ofH functions. The most important propert
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102 55WEST, GRIGOLINI, METZLER, AND NONNENMACHER
of the Fox functions for our present purposes has to do w
their Laplace transforms and inverse Laplace transforms.
ing the notation

H~ t !5Hp,q
m,nS tU~aj ,a j !

~bj ,b j !
D , ~24!

the Laplace transform of this Fox function can be expres
in terms of another Fox function

H̃~s!5LH~ t !5
1

s
Hq,p11
n11,mS sU ~12bj ,b j !

~1,1!,~12aj ,a j !
D ~25!

for 0<m<1 and

H̃~s!5
1

s
Hp11,q
m,n11S 1s U~0,1!~aj ,a j !

~bj ,b j !
D ~26!

for m>1, respectively. The parameterm is defined in the
Appendix. On the other hand, if we are given

H̃~s!5Hp,q
m,nS sU~aj ,a j !

~bj ,b j !
D , ~27!

the inverse Laplace transform is given by

H~ t !5L21H̃~s!5
1

t
Hq,p11
n,m S tU ~12bj ,b j !

~12aj ,a j !,~1,1!
D

~28!

for 0<m<1 and

H~ t !5
1

t
Hp11,q
m,n S 1t U~aj ,a j !,~0,1!

~bj ,b j !
D ~29!

for m>1, respectively. The relations~25!–~29! hold for
l.0 and for

max
1< j<n

ReS aj21

a j
D, min

1< j<m
ReS bjb j

D , ~30!

where Re denotes the real part of a complex number.
Now consider the Laplace-Fourier transform (x,t→k,s)

of Eq. ~18!,

ŝ0~k,s!5
1

s1F̃~s!k2
, ~31!

whereF̃(s) is the Laplace transform of the stationary corr
lation function. For the inverse power law~15! we have

F̃~s!5A^j2&sb21. ~32!

To make use of the Fox functions we require only t
Laplace transform of the probability density. Therefore
consider the inverse Fourier transform of Eq.~31! to obtain

s̃0~x,s!5
1

2pE2`

` e2 ikxdk

s1F̃~s!k2
. ~33!
h
s-

d

-

The poles of the integral occurs atk5 i @sF̃21(s)#1/2 for
x,0 and atk52 i @sF̃21(s)#1/2 for x.0, so Eq.~33! is
directly integrated to yield

s̃0~x,s!5
exp$2uxuAsF̃21~s!%

2AsF̃~s!
, ~34!

which for the inverse power-law correlation function yield

s̃0~x,s!5
sH21

2AA^j2&
expH 2

uxusH

AA^j2&
J , ~35!

where

H512b/2. ~36!

It is a simple matter to express Eq.~35! in terms of the
Fox function~see also@12#! and then use the inverse Laplac
transform relations to obtain the solution to the fraction
diffusion equation~20!. We obtain

s̃0~x,s!5
1

A4A^j2&Hux̄u~H21!/H
H0,1
1,0Xux̄u1/HsUSH21

H
,
1

H D C,
~37!

wherex̄5x/AA^j2&. Since 0,b,1 we have from Eq.~36!
that 1/2,H,1, so that the inverse Laplace transform of E
~37! is

s0~x,t !5
1

A4A^j2&HtH
H1,1
1,0S F uxu

AA^j2&tH
G 1/HU~12H,1!

~0,1/H ! D .
~38!

A closed-form asymptotic expression for Eq.~38!, with
uxu1/H/t@1, is

s0~x,t !>CS uxu2H21

A4A^j2&tH
D 1/~222H !

expH 2~12H !HH/~12H !

3S uxu

AA^j2&tH
D 1/~12H !J , ~39!

where the prefactorC is given by

C5
2H/~222H !H ~2H23/2!/~12H !

2ApA1/HA1/H21
. ~40!

Both Eqs.~38! and ~39! for H51/2 reduce to the familiar
Gaussian distribution

s05
1

A4pA^j2&t
expH 2

x2

4A^j2&t J . ~41!

Note that in Eq.~39! the dimensions ofAA^j2& are~length!/
~time!H, so that the exponent is dimensionless and the p
actor has dimension of~length! 21, as it should for a prob-
ability density in one dimension.

In Fig. 2 the probability density is depicted in the scal
variable x/tH for x.0. The dependence of the tail of th
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55 103FRACTIONAL DIFFUSION AND LÉVY STABLE PROCESSES
distribution onH is evident, with the higherH decaying
more rapidly. This behavior is more clearly seen in Fig. 3 o
a log-log plot. The Gaussian distribution has a rapidly deca
ing shoulder and is flat in the vicinity ofx50, whereas
H.1/2 gives rise to a hump prior to its decay. The full rang
of the symmetric distribution is depicted in Fig. 4. The su
perdiffusive processH.1/2 is bimodal with the symmetric
peaks revealing the tendency for a walker to continue wa
ing in a direction over and above that determined by pu
randomness. In Fig. 5 the peaks in this latter process are s
to separate with increasing time and the distribution flatte
out. Note that the apparent cusp in the bimodal distribution
an illusion of scale, the distribution is actually flat in the
vicinity of x50, as seen in Fig. 5.

It is also worthwhile to use Eq.~39! to calculate the mean-
square displacement of the random walker at timet:

^x2~ t !&5E
2`

`

x2s0~x,t !dx, ~42!

from which we obtain

FIG. 2. Probability densitys0(x,t) that is the solution to the
fractional diffusion equation~20! for H50.5 ~- - -!, H50.6 ~—!,
andH50.8 (2•2), plotted in scaled variables.

FIG. 3. Probability densitys0(x,t) depicted in Fig. 2 for
H50.5 ~- - -! andH50.6 ~—!, replotted on a decadic log-log scale
to emphasize the behavior of the distribution in the neighborhood
x50.
n
-

-

-
e
en
s
is

^x2~ t !&5Kt2H, ~43!

whereK is a constant. Because 1.H>1/2 we have anoma
lous diffusion, since from Eq.~36!

^x2~ t !&5Kt22b, 0,b,1 ~44!

so that the process is superdiffusive and non-Gaussian.
same result could, of course, also have been obtained u
the Fox function~38! rather than its asymptotic form~39!
with a little more work.

V. LÉVY STABLE PROCESSES

It was shown by Zumofen and Klafter@16#, using a
CTRW, and by Trefa´n et al. @17#, using a master equatio
approach, that if unavoidable dynamical truncations are
nored, the diffusion generated by the correlated, dicho
mous processj results in a characteristic function for a sym
metric Lévy stable process with the Le´vy indexa5g. This
means that we are observing ana-stable Lévy process with
an index in the interval 1,a<2. Notice that, in principle,
the a-stable Lévy process concerns the wider rang

of

FIG. 4. Full range of the symmetric probability densi
s0(x,t), depicted at the single timet51 for H50.5 (•••),
H50.65 ~—!, andH50.8 ~- - -!.

FIG. 5. Full range of the symmetric probability densi
s0(x,t), depicted forH50.7 at four timest51 ~—!, t52 (•••),
t55 ~- - -!, andt510 ~- • -!.
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104 55WEST, GRIGOLINI, METZLER, AND NONNENMACHER
0,a<2. However, the conditiona<1 refers to processe
faster than ballistic diffusion and so is incompatible with t
dynamical nature of the process described by Eq.~1!. In the
preceding section we observed that taking the asympt
limit in both space and time, such thatuxu/tH@1, gives rise
to an exponential distribution function. This result is inco
sistent with the Le´vy distribution obtained earlier, since th
latter has an inverse power-law form asymptotically. Ho
can these two results be resolved?

The answer lies in the choice of the correlation functi
used in Sec. IV. If the two-point correlation function is
have a unit value initially then

Fj~ t !5
A

~B1t !b , ~45!

which is unity att50 if A5Bb. The asymptotic form for the
correlation function~45! was assumed to be given by E
~15! and was used in the fractional diffusion equation~9!.
Equation~15! does not properly describe the dynamics of t
two-state process, however. Note that

Fj~ t2t8!5
A

~B1t2t8!b ~46!

and t8 approachest at the upper limit of the integral~18! so
that B cannot be neglected relative to (t2t8) even at very
long times. To properly account for the nonzero value oB
we change the non-Markovian equation~9! into a Markovian
equation using the constraint

s0~x,t2t8!5
1

2WE
2`

`

dx8dS t82
ux2x8u
W Ds0~x8,t !. ~47!

This constraint implies that the transition timet to the time
(t2t8) is obtained by assuming that the velocity is kept co
stant for the whole interval of timet8. This constraint would
be violated by ordinary Brownian motion, but is certain
fulfilled by dynamical systems with the correlation functio
~46! for time intervals of the order ofB. For longer time
intervals the constraint~47! is violated and its introduction
into Eq. ~9! turns out to be an approximation. This approx
mation, however, serves the important purpose of preven
us from overestimating the short-time region of the corre
tion function and in so doing from introducing a fictitiou
‘‘microscopic’’ times scale, which is responsible for the r
sults illustrated in Figs. 2–4. Thus the results of Sec. IV
a consequence of overemphasizing the short–time beha
of the approximate correlation function, even in the ‘‘asym
totic’’ regime.

Substituting the distribution function~47! into Eq. ~9!
yields

]s0~x,t2t8!

]t
5

1

2WE
0

t

dt8Fj~ t8!
]2

]x2E2`

`

3dx8dS t82
ux2x8u
W Ds0~x8,t !, ~48!
ic

-

-

g
-

e
ior
-

so that changing thex derivative on the Diracd function to a
t8 derivative and integrating the resulting equation by pa
give rise to

]s0~x,t !

]t
5E

2`

`

dx8cS ux2x8u
W Ds0~x8,t !, ~49!

where the kernel is given by

c~ t !5
^j2&
2W3

]2Fj~ t !

]t2
. ~50!

Note that here we do not need to assume the relation betw
the correlation function and the waiting-time distributio
function from CTRWs given by Eq.~12!. If we now use the
inverse power law~45! in Eq. ~50!, taking cognizance of the
fact that^j2&5W2, we can rewrite Eq.~49! as

]s0~x,t !

]t
5CE

2`

`

dx8
s0~x8,t !

~B1ux2x8u!b12 . ~51!

Here is where we take advantage of the fact that the t
constraint has already been accounted for through Eq.~47!,
so we can neglectB in Eq. ~51!. Introducing the paramete
a5b11 and evaluating the coefficientC to be

C5
b

p
sinS ap

2 DG~a11!5b~b11!AWb11, ~52!

we obtain from Eq.~51!

]s0~x,t !

]t
5
b

p
sinS ap

2 DG~a11!E
2`

`

dx8
s0~x8,t !

ux2x8ua11 .

~53!

Seshadri and West@9# established that Eq.~53! is the
integro-differential equation describing the evolution of
a-stable Lévy process for 0,a<2.

The Fourier transform of Eq.~53! is given by

]ŝ0~k,t !

]t
1bukuaŝ0~k,t !50, ~54!

which immediately integrates to an exponential with the i
tial condition ŝ0(k,0)51. Therefore, in terms of Fox func
tions we can write

ŝ0~k,t !5exp~2btukua!5
1

a
H0,1
1,0X~bt!1/aukuUS 0,1a D C

~55!

and subsequently the inverse Fourier transform of Eq.~55!
yields the probability density

s0~x,t !5
p

auxu
H2,2
1,1S uxu

~bt!1/a U~1,1/a!,~1,1/2!

~1,1!,~1,1/2!
D

5(
l51

`

~21! l11
G~11 la!

l !
sinS lpa

2 D ~bt! l

uxu la11 , ~56!

the expansion being valid for large argume
uxu/(bt)1/a@1. A generalization of this series expansion f
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the Fox function is given by Glo¨ckle and Nonnenmacher@6#
and the identical series is given by Montroll and West@2# for
a-stable Lévy distributions. It appears that Schneider@10#
was the first to realize that Le´vy a-stable processes can b
expressed in terms of Fox functions.

Note that the asymptotic form of the Le´vy a-stable pro-
cess is an inverse power law

s0~x,t !'
bt

uxua11 . ~57!

This asymptotic behavior is distinct from the exponent
from observed in Eq.~39! and is a consequence of maintai
ing the effect ofB.0 in the asymptotic limit through the
constraint~47!.

VI. CONCLUSION

A simple two-state random process with an inve
power-law correlation function was shown to produce a r
dom walk described by an exact fractional diffusion equ
tion. Such equations describe anomalous transport and
shown to have exact solutions in terms of Fox functions. T
fractional calculus was shown to present a powerful ma
ematical method for deriving and solving fractional diffusio
equations. Exact analytic solutions to such equations are
tained in terms of Fox functions by using Fourier, Lapla
and Mellin transforms. The property that the Laplace tra
form of a Fox function is still a Fox function with altere
indices enables us to obtain exact solutions to the fractio
diffusion equations and ultimately to express the solution
terms of more familiar special functions.
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APPENDIX: FOX FUNCTIONS

Fox’s H function is defined by the Mellin-Barnes-typ
integral

Hp,q
m,nS zU~a,a!

~b,b!D 5
1

2p i ECh~s!zsds, ~A1!

where (a,a)5(a1 ,a1),(a2 ,a2), . . . ,(ap ,ap); (b,b)
5(b1 ,b1),(b2 ,b2), . . . ,(bq ,bq); andh(s) is given by
s

l

e
-
-
re
e
-

b-
,
-

al
n

-

h~s!5
P j51

n G~12aj1a j s!Pk51
m G~bk2bks!

P l5m11
q G~12bl1b ls!P r5n11

p G~ar2a rs!
,

~A2!

where p, q, m, and n are integers satisfying 0<n<p,
1<m<q, and empty products are interpreted as unity; s
@18# and @19#. The parametersa j ( j51, . . . ,p) and b j
( j51, . . . ,q) are positive numbers andaj ( j51, . . . ,p) and
bj ( j51, . . . ,q) are complex numbers satisfying

a j~bl1n!Þb l~aj212l! ~A3!

for n,l50,1, . . . ; l51, . . . ,m; and j51, . . . ,n. HereC is a
contour in the complexs plane separating the poles in such
way that the poles ofG(bj2b j s) ( j51, . . . ,m) lie to the
right and the poles ofG(12aj1a j s) ( j51, . . . ,n) lie to the
left of the contourC. The Fox function is an analytic function
of z ~i! for everyzÞ0 if m.0 and~ii ! for 0,uzu,b21 is
m50, where

m5(
j51

q

b j2(
j51

p

a j ~A4!

and

b5)
j51

p

a j
a j)
j51

q

b j
2b j . ~A5!

The H function is, in general, multiple valued due to th
factor zs in the integral~A1!, but it is single valued on the
Riemann surface of lnz.

The theorem of residues enables us to express the
function as the infinite series

Hp,q
m,n~z!

5(
l51

m

(
k50

` )
j51,jÞ l

m

G~bj2b j slk!)
r51

n

G~12ar1a rslk!

)
u5m11

q

G~12bu1buslk! )
v5n11

p

G~av2avslk!

3
~21!k

k!

zslk

b l
, ~A6!

where slk5(bl1k)/b l . The prime indicates the produc
without the factorj5 l . The formula~A6! can be used for the
calculation of special values of Fox functions and to der
the asymptotic behavior forz→0.
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