
PHYSICAL REVIEW E AUGUST 1997VOLUME 56, NUMBER 2
Biased continuous time random walks between parallel plates
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The generalized scheme of continuous time random walks in moving fluids@A. Compte, Phys. Rev. E55,
6821 ~1997!# is applied to particles diffusing between parallel plates whose jumps are biased by a nonhomo-
geneous longitudinal velocity field. We observe that when the statistics governing diffusion is Brownian the
results are those of Taylor dispersion, i.e., enhanced longitudinal diffusion due to the coupling of the transverse
diffusion of the solute and the unidirectional velocity field. However, for Le´vy flights with infinite mean
waiting time we observe an anomalous dispersion approaching ballistic diffusion. We interpret this behavior as
a consequence of the coupling between the flow and the waiting time statistics.@S1063-651X~97!01208-7#

PACS number~s!: 05.40.1j, 05.60.1w, 02.50.2r, 47.15.2x
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I. INTRODUCTION

Continuous time random walks~CTRW’s! @1# are an in-
teresting and useful generalization of Brownian rand
walks, since they permit the analysis of the diffusion pro
erties of Markovian processes governed by statistics o
than the standard Gaussian statistics of the central limit th
rem ~Lévy statistics!. This feature has been exploited in
variety of applications, ranging from conduction in amo
phous materials@2# to turbulent diffusion in fluids@3#. We
will here apply a newly proposed scheme of CTRW’s
nonhomogeneous velocity fields@4# to model the diffusion
properties of Le´vy flights of infinite mean waiting time
evolving within a nonhomogeneous force field and restrai
to stay between parallel plates. This problem has an intrin
interest since, as we know from standard Brownian dif
sion, nonhomogeneous velocity fields in a bounded fl
might have essential influences on the dispersion of a so
~Taylor dispersion@5#! or in other related topics such as th
rich variety of situations encompassed by generalized Ta
dispersion@6#. The question of how such inhomogeneiti
might affect the diffusion of a Le´vy walker is therefore rel-
evant as a basic problem and has simultaneously cons
able applied interest. Indeed, one of the first successful
plications of CTRW’s was to interpret the anomalo
behavior of the transient current in an amorphous mate
~xerographic films! @2#. In that case, diffusion was biased b
a homogeneous electric field; allowing it to be inhomog
neous would result in a physical instance of the system
study here. Other situations where our model finds appl
tion are separation techniques such as chromatography
electrophoresis, where long tail entanglement time distri
tions provide a better description than standard diffus
theory@7,8#. This system may also be of interest in diffusio
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in a fractal porous media subject to a pressure gradient, w
the diffusing particles get stuck in the fractal matrix for
certain time before proceeding with a new jump. In this
spect, analogous concepts to our distribution of waiting tim
have already been used in hydrodynamic dispersion in
rous media by resorting to the analogy with a resistor n
work @9#. In this paper we will bear in mind this kind o
experiments when applying the CTRW techniques to dif
sion in a nonhomogeneous force field~in our previous ex-
amples the electric field or the pressure gradient, resp
tively!. To use a general and more visual picture th
encompasses all the possible experimental instances o
scheme, we shall imagine a fluid flowing between para
plates where a tracer is released and its diffusion studied
the property that the tracer particles are not being conti
ously dragged by the stream but stay still between succes
jumps.

To model our system we shall make use of a general
tion of the CTRW scheme@4#, which has been proposed t
account for stochastic movements defined by a step len
and waiting time probability distribution function in a veloc
ity field. In @4# this generalized scheme was applied to line
shear flows and the results were proven to be consistent
the standard results of Brownian diffusion theory@10#. Sub-
sequently the scheme was applied to Le´vy flights of infinite
mean waiting time and infinite mean square step length,
spectively, to obtain their dispersion in linear shear flows a
thus study their anomalous diffusive properties. At this po
the scheme was seen to be consistent with the relatio
CTRW’s to fractional derivatives@11,12#, and with some
previously proposed fractional diffusion equations in co
vective flows@13#. We plan to proceed here quite similar
but we now use a different flow, namely, a laminar flo
constrained between two parallel plates, and focus on
longitudinal diffusion~namely, in the flow direction! of the
tracer particles.

As we mentioned, our system is very reminiscent of ty
1445 © 1997 The American Physical Society
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1446 56ALBERT COMPTE, RALF METZLER, AND JUAN CAMACHO
cal elementary instances of Taylor dispersion especi
when visualized as diffusion in a flow and, as we shall s
here, the asymptotic behaviors do indeed coincide with
standard results in Taylor dispersion for Brownian diffusi
but differ for Lévy flights with divergent mean waiting time
The main feature of Taylor dispersion is the enhancemen
the longitudinal diffusion, characterized for long times by
effective diffusivity D eff proportional to the inverse of th
molecular diffusivity, as was first noted by Taylor@5# in a
fluid in Poiseuille streaming through a cylindrical tube a
later generalized by Aris@14# to arbitrary cross section an
flow profile. Many works have subsequently treated
question of the longitudinal dispersion of particles suspen
in flows from a variety of points of view~ @15,16#, and ref-
erences therein!, and in some instances efforts have be
made to incorporate in the system non-Brownian rand
walks, such as persistent random walks@16,17# with no
qualitative deviation from standard behavior. It must
stressed, however, that the situation dealt with in the pre
paper is slightly different from the usual one in Taylor d
persion. Indeed, we consider here that the solute particles
dragged by the flow only during the jumps, but remain s
between successive jumps. The case where the particle
continuously dragged by the velocity field will be included
the context of CTRW in future works. In this paper we fin
that for Lévy flights the asymptotic behavior for long time
has essential differences to standard Taylor diffusion and
proaches ballistic diffusion, whereby Taylor dispersion
only present as a higher-order phenomenon, the leading
for long times correponding to a purely convective mec
nism.

The paper is structured as follows: in the next section
briefly summarize the generalized CTRW scheme of@4#.
Section III contains the details of the application of t
scheme to a moving fluid constrained to move laminarly
tween two parallel plates. The application to a particular
locity profile is made in Sec. IV and in Sec. V it is show
that for Brownian diffusion the usual mean square displa
ment of the tracer particles in Taylor dispersion is exac
obtained through this method. We proceed in Sec. VI
study the behavior of Le´vy flights for that same velocity
profile. To this aim we need to make use of some aspect
the theory of Fox’sH functions, which we quickly expose in
the Appendix. The conclusions of the paper are finally ma
in Sec. VII.

II. CTRW IN MOVING FLUIDS

This generalization of CTRW to account for diffusion in
velocity field is presented in more detail elsewhere@4# but
we give here a short summary to present the scheme w
we shall later apply to model our system. In@4# it was argued
that in a velocity fieldv the distribution of step lengths of th
random walkerf gets shifted proportionally tov with re-
spect to the distribution of step lengths in a resting fluidc.
Furthermore, in an inhomogeneous velocity fieldv(x) the
probability densityf of a length of stepr with waiting time
t will crucially depend on the velocity of the fluid at th
starting point of the jumpx so that we have

f5f~r ,t;x!5c„r2tav~x!,t…, ~1!
ly
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whereta is a microscopic time associated with advection
the sense thattav(x) is the mean drag experienced by
random walker jumping from the pointx. This interpretation
implies that, if the mean waiting timet of the microscopic
process exists, then in order that the mean velocity of
dragged particles at positionx, tav(x)/t, coincides with the
velocity field v(x) at that point we necessarily haveta5t .
However, if the mean waiting time is infinite~as happens in
the Lévy flights that we consider here! this argument is no
longer valid, since we now do not have a characteristic
croscopic time scale. In this case, the relationship ofta to
other microscopic times in the system will prove crucial f
obtaining a well-defined macroscopic limit@4#.

The CTRW scheme can now be reformulated taking i
consideration the dependences expressed in Eq.~1!: if
P(x,t) is the probability density of arriving at pointx at time
t andr(x,t) is the probability density of being at pointx at
time t, we have

P~x,t !5E dx8E
0

t

dt8f~x2x8,t2t8;x8!

3P~x8,t8!1Pi~x!d~ t !, ~2!

r~x,t !5E
0

t

dt8P~x,t2t8!C~ t8!, ~3!

where we have introduced in Eq.~3! the probabilityC(t8) of
remaining at least a timet8 on the spot before proceedin
with another jump@C(t)5*Vdr* t

`dt8c(r ,t8)# and we have
incorporated the initial distribution function
Pi(x)5P(x,t50) in Eq. ~2!. In Eqs.~2! and ~3! we explic-
itly suppose that the particles stay still between succes
jumps. We now combine Eqs.~2! and ~3! to get

r~x,t !5E dx8E
0

t

dt8f~x2x8,t2t8;x8!r~x8,t8!

1Pi~x!C~ t !, ~4!

or, in the Fourier-Laplace domain,

r~k,u!5E dk8f~k,u;k2k8!r~k8,u!1Pi~k!C~u!.

~5!

Equations~1!, ~4!, and ~5! are the main equations of th
generalized CTRW scheme and they are the starting poin
any application to particular forms ofv(x), as was done in
@4# with linear shear flows.

III. CTRW BETWEEN PARALLEL PLATES

The system under study is a solute suspended in a fl
constrained between two parallel infinite plates and allow
to flow laminarly in one direction. Let us suppose that the
plates are parallel to theXZ plane and that they are equidis
tant to the origin of coordinates and separated a dista
2a along they axis. The flow direction will be chosen to b
the x axis. The problem is therefore essentially two dime
sional and we shall henceforth suppress all references to
variablez for the sake of clarity. To impose the nonpenetr
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56 1447BIASED CONTINUOUS TIME RANDOM WALKS BETWEEN . . .
bility at the plates we could imagine a system composed
infinite repetitions of the real system along they direction
~method of images!. Nevertheless, since we will eventual
want to apply our scheme to Le´vy flights and it has been
shown in@18# that the method of images is not applicable
Lévy flights with an absorbing boundary, we will here pr
ceed along a more intuitive path, although essentially equ
lent, to justify its application when we have two reflectin
barriers instead of an absorbing boundary.

Following @18# it is our aim here to express the dens
distribution function of the walker between the plat
r(x,y,t) in terms of the unrestricted density distributio
function in an infinite mediumP(x,y,t), which for a walker
evolving on a resting fluid is known to be given in th
Fourier-Laplace domain by the formula@1,19#

P~k,u!5Pi~k!
C~u!

12c~k,u!
, ~6!

with Pi(k) the Fourier transform of the initial distributio
Pi(x)5P(x,t50).

We now argue that the reflecting boundaries aty52a
and y5a might be obtained by folding the plane along t
lines y5(2n11)a for all integern onto a single stripe of
width 2a, centered aty50 and of infinite length along the
x axis. It is also necessary to build up a velocity field for t
whole space in terms of the~arbitrary! velocity profile in the
stripe 2a,y,a, for our purposes thisv(x) must be peri-
odic of period 4a and symmetric with respect to the wall
We now only need to sum up at each point of the origi
stripe the contributions to the density distribution function
each folded stripe:

r~x,y,t !5 (
n52`

`

@P~x,4an1y,t !1P~x,4an12a2y,t !#.

Applying the Fourier transform we get

r~kx ,ky ,t !5 (
n52`

`

@ei4ankyP~kx ,ky ,t !

1e2 i ~4an12a!kyP~kx ,2ky ,t !#. ~7!

To carry out the summations explicitly we use the ident

(
m52`

`

e2 ikm5e2 ik/2 (
m52`

`

~21!mdS m1
k

2p D
so that Eq.~7!, after inverting the Fourier transform, turn
into

r~x,y,t !5 (
m52`

`

eipmy/2a
1

4aFPS x,ky5
mp

2a
,t D

1~21!mPS x,ky52
mp

2a
,t D G ,

where we recognize a Fourier series of period 4a, consistent
with the periodicity of the velocity profile which we use t
calculateP(r ,t). We shall henceforth work with the Fourie
coefficients ofr(kx ,y,u),
y

a-

l
f

rm~kx ,u!5
1

4aFPS kx ,ky5
mp

2a
,uD

1~21!mPS kx ,ky52
mp

2a
,uD G . ~8!

If the fluid is at rest,v(y)50, Eq.~8! can be easily solved
for rm by using the formula~6!. For more complicated flows
though, we still cannot obtainrn from Eq.~8!. We first need
to calculate the probability densityP of the random walker
in the unfolded space with periodic velocity field. We ta
formula ~5! where, following Eq.~1!, f is given by

f~k,u;k8!5c~k,u!E dx8e2 ik8•x8e2 i tak•v~x8! ~9!

in terms of the velocity fieldv(x8). Sincev(x8) is directed
along thex axis, depends only ony, and is periodic of period
4a we may express the exponential appearing in Eq.~9! in
terms of a Fourier series as

e2 i tak•v~x8!5e2 i takxv~y8!5 (
n52`

`

dn~kx!e
inpy8/2a,

where

dn~kx!5
1

4aE22a

2a

e2 i takxv~y!e2 inpy/2ady.

This last expression can be transformed, using the fact
v(y) is symmetric across the walls:v(y1a)5v(a2y) and
v(y2a)5v(2a2y), to obtain an integral forv(y) over the
interval 2a,y,a, where no further restrictions are im
posed by the geometry on the functional relationv5v(y),

dn~kx!5
1

4aE2a

a

e2 i takxv~y!@e2 inpy/2a1~21!neinpy/2a#dy.

~10!

We now introduce this result into Eqs.~9! and ~5! to get

P~kx ,ky ,u!5c~kx ,ky ,u! (
n52`

`

dn~kx!PS kx ,ky2
np

2a
,uD

1C~u!Pi~kx ,ky!,

which combined with Eq.~8! yields the following coupled
set of linear equations for the coefficientsrn :

rn~kx ,u!5cS kx ,ky5
np

2a
,uD (

m52`

`

dm~kx!rm2n~kx ,u!

1
C~u!

4a FPi S kx ,ky5
np

2a D
1~21!nPi S kx ,ky52

np

2a D G , ~11!

where use has been made of the relat
d2n(kx)5(21)ndn(kx), obvious from Eq.~10!. Equation
~11! is now the equation to be solved for a given veloc
field, a given initial conditionPi(x), and a given step distri-
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1448 56ALBERT COMPTE, RALF METZLER, AND JUAN CAMACHO
butionc. However, for the case of a symmetric velocity fie
v(y)5v(2y) and a symmetric initial condition
Pi(x,y)5Pi(x,2y), Eq. ~11! can be somewhat simplifie
by observing that the coefficientsdn(kx) in Eq. ~10! vanish
for unevenn. It is then easy to see that the coefficien
rn(kx ,u) vanish for unevenn as well, and only the coeffi-
cientsrn(kx ,u) for evenn remain to be computed from Eq
~11!. Since we are now in a case of higher periodicity~period
2a) we can redefine the nonvanishing Fourier coefficients
simplify the notation asdn85d2n andrn85r2n ,

rn8~kx ,u!5cS kx ,ky5
np

a
,uD (

m52`

`

dm8 ~kx!rm2n8 ~kx ,u!

1
1

2a
C~u!Pi S kx ,ky5

np

a D . ~12!

Equation~12! can be rewritten taking into account that, b
cause of the symmetry in the velocity, the distribution fun
tion must also be symmetric and thereforer2n8 5rn8 ,

rn85c~n!Fd08rn81 (
m51

`

dm8 ~r um2nu8 1rm1n8 !G1
C

2a
Pi ~n! ,

~13!

where we have dropped the explicit dependence of the v
ables for they can easily be inferred from Eq.~12! and the
subscript (n) indicates thatky is to be replaced bynp/a in
the corresponding function.

The study of the solute’s longitudinal dispersion will ne
the evaluation of the first moments of the averaged conc
trationr0(x,t). To proceed, two things are therefore need
first, the precise form ofdm(kx) or dm8 (kx) must be computed
from the velocity fieldv(y) and introduced into Eq.~11! or
Eq. ~13!; and secondly, a particular statistics for the jum
c(r ,t) must be introduced in our equations. In the next s
tion we find the equations for the averaged densityr0 for a
conveniently chosen velocity profile, and in the subsequ
sections two statistics for the stochastic movements of
solute are analyzed: the standard Brownian case and L´vy
flights with infinite mean waiting time.

IV. EQUATIONS FOR THE AVERAGED DENSITY r0

The choice of the functional form ofv(y) is crucial to
permit the analytic study of Eq.~11!. We choose the sym
metric velocity field

v~y!5vS 11cos
py

a D , ~14!

wherev is the mean velocity of the flow. We look for th
coefficients of the Fourier series of exp@2itakxv(y)# for pe-
riod 2a,
o

-

ri-

n-
:

s
-

nt
e

dn8~kx!5
1

2aE2a

a

expF2 i takxvS 11cos
py

a D Ge2 inpy/ady

5 i ne2 i takxvJn~2takxv !, ~15!

whereJn(x) is the Bessel function of the first kind of orde
n and argumentx. Even though the coefficients~15! might
seem complicated, they have an important character
which will be very useful in our further developments: the
are of orderkx

n askx→0,

dn8~kx!.
1

n! S 2 i tav
2 D n

kx
nF12 i tavkx

2
2n13

n11

ta
2v2

4
kx

21•••G . ~16!

To understand the usefulness of this fact we must focus
our main objective, which is to establish the mean squ
displacement̂dx2&5^x2&2^x&2 averaged along they direc-
tion. To this aim we will need to compute

^x&5E
2`

`

dxxE
2a

a

dyr~x,y,t !52ai
]r08~kx ,t !

]kx
U

kx50

52air0,18 ~ t !, ~17!

^x2&5E
2`

`

dxx2E
2a

a

dyr~x,y,t !522a
]2r08~kx ,t !

]kx
2 U

kx50

524ar0,28 ~ t !, ~18!

where byr0,28 (t) and r0,18 (t) we denote the coefficients o
kx

2 andkx in the Taylor series representation ofr08(kx ,kz ,t)
askx→0, respectively. Of course at this step we are assu
ing the analyticity inx of r(x,y,t) and we are therefore
explicitly excluding from our analysis CTRW’s with nonana
lytic step length distribution~such as CTRW’s with infinite
mean square step length!. We are thus only interested in th
first terms of the Taylor series ofr08(kx ,t) aroundkx50 in
order to obtain the required quantity^dx2&. For this reason
we can proceed in a perturbative manner to solve to
lowest orders ofkx Eq. ~13! for n50, and the property~16!
of our coefficientsdn8(kx) will be of extreme utility to trun-
cate the infinite sum in Eq.~13!. Let us first write the first
orders inkx for the quantities of interest as

rn8~kx ,u!.rn,08 ~u!1rn,18 ~u!kx1rn,28 ~u!kx
21•••,

c~n!~kx ,u!.c~n!,0~u!1c~n!,2~u!kx
21•••,

dn8~kx!.dn,n8 kx
n1dn,n118 kx

n111dn,n128 kx
n121•••, ~19!

where we have supposed that we start from an isotropic
tribution of stepsc in the fluid at rest so that we hav
c (n),150. Note that in these expansions the second subin
always indicates the order inkx of the corresponding term in
the series. We now write the relevant equations from
~13! for the orders of interest: 0, 1, and 2,
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rn,08 5c~n!,0d0,08 rn,08 1
C

2a
Pi ~n!,0 ,

rn,18 5c~n!,0d0,08 rn,18 1c~n!,0d0,18 rn,08 1c~n!,0d1,18 ~rn11,08 1rn21,08 !1
C

2a
Pi ~n!,1 ,

rn,28 5c~n!,0d0,08 rn,28 1c~n!,0d0,18 rn,18 1~c~n!,0d0,28 1c~n!,2d0,08 !rn,08 1c~n!,0d1,18 ~rn11,18 1rn21,18 !1c~n!,0d1,28 ~rn11,08 1rn21,08 !

1c~n!,0d2,28 ~rn12,08 1rn22,08 !1
C

2a
Pi ~n!,2 ,

where we have not written the dependencies of each function but they can be inferred from Eqs.~12! and ~19!. Now, to
computer0,18 andr0,28 , we shall need

rn,08 5
1

12c~n!,0

C

2a
Pi ~n!,0 , n522,21, . . . ,2

rn,18 5
c~n!,0d0,18 rn,08 1c~n!,0d1,18 ~rn11,08 1rn21,08 !1~C/2a!Pi ~n!,1

12c~n!,0
, n521,0,1

r0,28 5
c~0!,0d0,18 r0,18 1~c~0!,0d0,28 1c~0!,2!r0,08 12c~0!,0d1,18 r1,18 12c~0!,0d1,28 r1,08 12c~0!,0d2,28 r2,08 1~C/2a!Pi ~n!,2

12c~0!,0
, ~20!
on
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where we have setd0,08 51, as is obvious from Eq.~16!, and
we have used thatrn85r2n8 for symmetric velocity fields. We
now only need to choose a symmetric initial distributi
Pi(x,y), define our spatially isotropic and analyt
c(x,y,t) for the particular kind of CTRW which we want t
study, and solve the coupled system of linear algebraic eq
tions ~20! to obtainr0,18 andr0,28 . In the next two sections we
do this for Brownian diffusion and for Le´vy flights, respec-
tively. For each case we shall also consider two differ
initial distributionsPi(x,y).

V. BROWNIAN DIFFUSION

We choose a Gaussian distribution of step lengths for
random walker:

c~kx ,ky ,u!5w~u!exp@2s2~kx
21ky

2!#, ~21!

w(u) being the Laplace transform of the distribution of wa
ing times, and we solve Eq.~20! for two different initial
distributions: one homogeneously distributed on the l
x50 for 2a,y,a and one initially concentrated at th
origin. For the first of these initial conditions we hav
Pi(x)5(1/2a)u(a2uyu)d(x), u(x) being the Heaviside
function. Upon Fourier transformation it is found th
Pi (n)(kx)5dn,0 and the system~20! is readily solved to get

^x&52air0,18 ~u!5
tav
u

w

12w
, ~22!
a-

t

r

e

^x2&524ar0,28 ~u!52
s2

u

w

12w
1

ta
2v2

u

w

12w

3F3

2
12

w

12w
1

w

ep2s2/a2
2w

G . ~23!

For Brownian diffusion, we now introduce an exponent
decreasing distribution of waiting timesw(t)5t21exp(t/t),
which upon a Laplace transform turns in
w(u)5(11ut)21. Notice thatt is now the mean waiting
time between steps, so that one hasta5t as was argued in
Sec. II. By taking the limitt→0 and s→0 and keeping
D5s2/t constant we obtain the macroscopic results^X& and
^X2& ~henceforth we write capitalX to indicate that the mac
roscopic limit has already been taken on the correspond
quantities with lower casex), which retain only the essentia
properties of the random walk and thus discard all spuri
behaviors possibly dependent on the model chosen. W
nally invert the Laplace transform to get

^X&~ t !5vt,

^X2&~ t !5v2t21S 2D1
v2a2

p2D D t2
v2a4

p4D2 ~12e2p2Dt/a2
!.

The mean square displacement is now computed from th
results as

^DX2&[^X2&2^X&25S 2D1
v2a2

p2D D t

2
v2a4

p4D2 ~12e2p2Dt/a2
!, ~24!
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1450 56ALBERT COMPTE, RALF METZLER, AND JUAN CAMACHO
which is exactly the same functional relation, even for t
numerical constants and the transient terms, that is obta
by different stochastic methods in Taylor dispersion for
velocity profile ~14! @20#. Asymptotically we now find the
typical behaviors of the mean square displacement for sm
and large times, which show the standard Taylor diffus
results:

^DX2&5H 2Dt1
1

2
v2t21O~ t3!, t!a2/D

S 2D1
v2a2

p2D D t1O~1!, t@a2/D.

For the other initial distributionPi(x)5d(x), we proceed
analogously from Eq.~20! with now Pi (n)(kx)51. The cal-
culations to obtainr0,18 andr0,28 are somewhat more intricat
than in the previous case and yield the following expressi
for the quantities in which we are interested:

^x&5tav
w

uF ep2s2/a2

ep2s2/a2
2w

1
1

12wG , ~25!

^x2&52
s2

u

w

12w

1
ta

2v2

2u

5e4p2s2/a2
2w2e2p2s2/a2

24w

~ep2s2/a2
2w!2~e4p2s2/a2

2w!
e2p2s2/a2

w

1
ta

2v2

2u F ~314w!ep2s2/a2
2w

ep2s2/a2
2w

w

12w
14

w2

~12w!2G .

~26!

We now introduce the distribution of waiting time
w(u)5(11ut)21 and take the macroscopic limit as we d
before. Reverting again to the time representation throug
inverse Laplace transform we get

^X&~ t !5vt1
va2

p2DF12expS 2
p2

a2 Dt D G ,
^X2&~ t !5v2t21F2D1

3v2a2

p2D S 12
2

3
e2p2Dt/a2D G t

2
3

4

v2a4

p4D2F12
8

9
e2p2Dt/a2

2
1

9
e24p2Dt/a2G ,

from where the mean square displacem
^DX2&[^X2&2^X&2 of a Brownian random walker initially
concentrated atx50 in Taylor dispersion is readily derived

^DX2&5S 2D1
v2a2

p2D D t2
v2a4

p4D2S 7

4
2

8

3
e2p2Dt/a2

1e22p2Dt/a2
2

1

12
e24p2Dt/a2D . ~27!

Hence, the behavior for long and short times is found
be
e
ed
e

ll
n

s

an

t

o

^DX2&5H 2Dt1O~ t3!, t!a2/D

S 2D1
v2a2

p2D D t1O~1!, t@a2/D.

We see that the asymptotics prove to be independent of
initial conditions ~as was expected! and these initial condi-
tions are only relevant in the derivation of the transient ter
for ^DX2& in Eqs.~24! and~27!. It is now worth noting that
for Brownian diffusion our model, designed for particles n
being continuously dragged by the fluid stream, yields
actly the same results as the traditional computations for
uid systems in Taylor dispersion. This point becomes clea
we focus on the waiting period between successive jum
this being the only difference between the two models. If
have a finite mean waiting time between successive stet
and we take the macroscopic limit ast→0 we are effec-
tively making the waiting period between steps vanish
average, whereby no differences should arise from mod
only differing in the behavior of the particles during th
interval of time.

VI. LÉ VY FLIGHTS

We now turn to the question of determining the longit
dinal dispersion for Le´vy flights with infinite mean waiting
time evolving in a fluid constrained between parallel plates
y52a andy5a and subject to the velocity field~14!. This
point is easy after the developments of the preceding sec
if we take a Lévy flight of infinite mean waiting time and a
Gaussian distribution of step lengths as in Eq.~21!, where
now

w~u!5
1

11~ut!g ,0,g,1. ~28!

This choice allows us to make use of all the previous cal
lations up to Eqs.~22! and ~23! or Eqs.~25! and ~26!, de-
pending on the initial conditions. We introduce there o
w(u) and take the macroscopic limitt→0, ta→0, s→0
keepingD5s2/tg and A5ta /tg constant.A must be kept
as a macroscopic parameter associated with convection
dimensions of time to the power 12g. As it was argued in
@4# the introduction of the constantA seems to be necessa
to obtain well-defined equations free of all microscopic p
rameterst, ta , and s; it is nevertheless still unclear wha
physical foundations might support it. We first apply th
procedure to the case of a homogeneous initial distribu
on the segment2a,y,a of the y axis, that is to say we
introduce Eq.~28! in Eqs. ~22! and ~23! and then take the
macroscopic limit to get

^X&5Avu2g21, ~29!

^X2&52Du2g211A2v2u22g21S 21
1

11~Dp2/a2!u2gD .

~30!

We now need to apply the inverse Laplace transform to th
expressions. To this aim the only difficulty is to invert th
expressionu2ng21(11Ku2g)21, which appears in Eq.~30!
for n52. We express it as a geometrical series
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u2ng21

11Ku2g 5u2ng21 (
m50

`

~2Ku2g!m

and now invert it term by term to obtain

L21S u2ng21

11Ku2gD5tng (
m50

`
~2Ktg!m

G~mg1ng11!

5tngEg,11ng~2Ktg!, ~31!

where in the last equality we have identified the generali
Mittag-Leffler functionEa,b(z) @21#. Applying now this re-
sult to Eqs.~29! and ~30! we obtain

^X&5
Av

G~g11!
tg,

^X2&5
2D

G~g11!
tg1

2A2v2

G~2g11!
t2g

1A2v2t2gEg,112gS 2
Dp2

a2 tgD
in terms of the Mittag-Leffler function. To compute the me
square displacement we now apply the definiti
^DX2&[^X2&2^X&2 and get

^DX2&5
2D

G~g11!
tg1A2v2t2gF 2

G~2g11!
2

1

G~g11!2

1Eg,112gS 2
Dp2

a2 tgD G . ~32!

We now study the other initial condition, namely, a pul
initially concentrated at the origin. We introduce our dist
bution of waiting times~28! into Eqs.~25! and~26! and take
the macroscopic limit. We obtain, in the Laplace domain

^X&5Avu2g21F11
1

11~Dp2/a2!u2gG , ~33!

^X2&52u22g21FDug1A2v21
2

3

A2v2

114~Dp2/a2!u2g

1
4

3

A2v2

11~Dp2/a2!u2g 1
A2v2

@11~Dp2/a2!u2g#2G .
~34!

By using now the result~31! it is easy to invert Eq.~33! but
to invert Eq.~34! we need another special function, name
d

,

Maitland’s generalized hypergeometric function1C1 @22#.
To come up with this result and to obtain a unified expr
sion, we make use of the properties of Fox’sH function@22#,
a brief summary of which is given in the Appendix. Intro
ducing the Fox functions~A1! and ~A2!, we arrive at

^X&~ t !5
Avtg

G~g11!H 11G~g11!H1,2
1,1

3FDp2

a2 tgU~0,1!

~0,1!,~2g,g!
G J ,

^X2&~ t !5
2D

G~g11!
tg12A2v2t2gH 1

G~2g11!

1
2

3
H1,2

1,1F4
Dp2

a2 tgU~0,1!

~0,1!,~22g,g!
G

1
4

3
H1,2

1,1FDp2

a2 tgU~0,1!

~0,1!,~22g,g!
G

1H1,2
1,1FDp2

a2 tgU~21,1!

~0,1!,~22g,g!
G J .

We can now compute the mean square displacement for
particles initially concentrated at the origin and get

^DX2&5
2D

G~g11!
tg1A2v2t2gH 2

G~2g11!
2

1

G~g11!2

1
4

3
H1,2

1,1F4
Dp2

a2 tgU~0,1!

~0,1!,~22g,g!
G

1
8

3
H1,2

1,1FDp2

a2 tgU~0,1!

~0,1!,~22g,g!
G

12H1,2
1,1FDp2

a2 tgU~21,1!

~0,1!,~22g,g!
G

2
2

G~g11!
H1,2

1,1FDp2

a2 tgU~0,1!

~0,1!,~2g,g!
G

2H1,2
1,1FDp2

a2 tgU~0,1!

~0,1!,~2g,g!
G2J . ~35!

To compute the asymptotic behaviors of the results~32!
and ~35! we need to expand conveniently theseH functions
as we show in the Appendix, and we obtain
^DX2&5H 2D

G~g11!
tg1A2v2S ai

G~2g11!
2

bi

G~g11!2D t2g1O~ t3g!, t!~a2D21p22!1/g,

A2v2S 2

G~2g11!
2

1

G~g11!2D t2g1
1

G~g11!S 2D1
A2v2a2

Dp2 D tg1O~1!, t@~a2D21p22!1/g,

~36!
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where the coefficientsai andbi depend on the initial condi
tions and are herea153 and b151 for a homogeneously
distributed~in the axisx50) initial condition anda258 and
b254 for an initial pulse atx50. We observe in Eq.~36!
that, for long times, Le´vy flights (gÞ1) might present su-
perdiffusion~if 1/2,g,1). Therefore we encounter a par
doxical situation, where a stochastic mechanism which in
duces a delaying term~Lévy flights with infinite mean
waiting time! turns out to bring about superdiffusion whe
constrained to move between parallel plates and subjec
the nonhomogeneous velocity field~14!. A similar paradox
appeared in@4# when this Lévy flight was evolving in a
purely sheared two-dimensional flow. It can nevertheless
argued that an analogous paradoxical situation arises in s
dard Taylor diffusion, where the smaller the molecular d
fusion coefficientD the larger the effective diffusion rat
along directionx. In the latter case, this is not after all par
doxical if one follows a particle near the maximum of th
velocity profile ~herey50) and one realizes that the clos
the particle remains to this maximum the farther it trav
along the directionx and, at the same time, the particles ne
the minimum of velocity remain more stagnant the clo
they remain in their diffusive motion@16#. It is therefore
logical that a small molecular diffusion rate leads to a la
longitudinal Taylor diffusion rate. However, the mechanis
that accounts for the superdiffusion in Eq.~36! for
t@(a2D21p22)1/g is now of a different nature and stem
from the fact that our diffusing particles stay still betwe
successive jumps and are not being continuously dragge
the stream. We encounter arbitrarily long waiting time b
tween the biased steps of the walker, which means that s
particles remain forever stagnated after a finite numbe
steps whereas others keep jumping in the flow. This lead
an enhancement in the dispersion, which does not have
thing to do with the transverse diffusive motion and this
clear in Eq.~36!, where the leading term for long times do
not depend onD but only on the velocityv and the param-
eterA. The next-order term, though, does indeed contain
coupling of convection to the diffusive transverse motio
which is characteristic of Taylor dispersion. The mechani
of Taylor dispersion is therefore present but does not re
sent the dominant order for long times. This interpretat
also explains why the dispersion for long times in Eq.~36! is
accomplished by means of a new term int2g and not through
an increase of the effective diffusion coefficient in front
tg. For if an appreciable number of particles remains fix
after a small number of steps and the rest keep moving w
^X&}tg, the dispersion must at least increase
^DX2&}t2g, in a sort of ‘‘ballistic’’ way. The fact that the
average displacement of the particles does not increase
early with time, as should appear to be logical after a su
ciently long time, now has an easy explanation since
appreciable portion of ‘‘frozen’’ particles slows down th
advancement of the center of mass of the cloud of partic
A particular physical picture of this behavior is provide
quite clearly by macromolecular separation in gel elect
phoresis, where the motion of the macromolecules can
modeled as a succession of periods of advancement i
rupted by periods of immobility due to the entangleme
with the gel matrix@8#.
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We can corroborate this interpretation of the long-tim
result ~36! through some easy calculations involvingexclu-
sivelythe convection of the tracer particles: let us neglect
transverse diffusion of the particles so that the particles
vance on average the same quantitytav whenever they
jump. We then have the following expressions for the me
and the mean square displacement, respectively,

^x&~ t !5tavN̄~ t !, ~37!

^x2&~ t !5ta
2v2N2~ t !, ~38!

whereN(t) stands for the number of steps that a particle h
taken up to timet, and the bar over it indicates the avera
over all the tracer particles diffusing in the system. We d
note bypn(t) the probability that a tracer particle has pe
formedn jumps before timet,

pn~ t !5E
0

t

dt8E
0

t2t8
dt9•••E

0

t2t82•••2t~n21!

dt~n!w~ t8!

3w~ t9!•••w~ t ~n!!C~ t2t82t92•••2t ~n!!,

or, in the Laplace domain

pn~u!5C~u!@w~u!#n.

The quantitiesN̄(t) andN2(t) are now easily seen to be

N̄~ t !5 (
n50

`

npn~ t ! ⇒ N̄~u!5
1

u

w~u!

12w~u!
,

N2~ t !5 (
n50

`

n2pn~ t ! ⇒ N2~u!5
w~u!

u

11w~u!

@12w~u!#2 ,

~39!

whence it is now straightforward to calculate^x& and ^x2&
for our Lévy flights using Eq.~28! in Eqs.~39! and introduc-
ing the results in Eqs.~37! and~38!. The results obtained are
after the corresponding macroscopic limit,

^X&5
Av

G~g11!
tg,

^X2&5
2

G~2g11!
A2v2t2g,

^DX2&5A2v2S 2

G~2g11!
2

1

G~g11!2D t2g,

which are in absolute accordance with the leading terms
long times in Eq.~36! and the previous expressions for^X&
and ^X2&. This therefore makes it clear that for Le´vy flights
with divergent mean waiting time the main dispersi
mechanism is convection decoupled from diffusion and
therefore do not properly have Taylor dispersion for su
ciently long times.

It must be noted here that such a convectively origina
dispersion has already been observed in gel electropho
@8#, and it has been interpreted through the modeling of
kinetics of the transition between the adsorbed and mo
phases in terms of a waiting time distribution function with
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finite first moment and divergent variance@7#. It is straight-
forward to prove that, if the waiting time distribution in@7# is
taken as here, the results agree perfectly with ours as lon
we identify ta

21 as the first-order rate constant of the tran
tion from the mobile phase to the adsorbed phase. C
versely, our model yields the asymptotic results of@7# as
well, as is readily seen by substituting their waiting tim
distribution in Eq.~39!. Both from the random walk formal
ism in this paper and from a kinetic approach in@7# it is
therefore concluded that, when a long tail waiting time d
tribution is present, the main dispersion mechanism is nei
diffusion nor Taylor dispersion but pure convection. Th
the long-time analysis of such a system is most easily p
formed through the statistical considerations leading to E
~37! and ~38!.

VII. CONCLUSIONS

In this paper we have further developed the generali
CTRW scheme@4#, which permits the analysis of the diffu
sive properties of CTRW’s evolving in convective flows. W
have applied it here to diffusion constrained between para
plates and subject to a nonhomogeneous force field. First
have shown that for Brownian diffusion the scheme rep
duces exactly the mean square displacement obta
through more standard methods for Taylor dispersion@20#
and then we have used the scheme on Le´vy flights. We have
thus obtained for the first time the mean square displacem
for a Lévy flight with infinite mean waiting time subjected t
a nonhomogeneous longitudinal flow and constrained
move between two parallel plates. As is customary
anomalous diffusion problems@12,23#, the results involve
Fox’s H functions and this permits the derivation of both t
long-time and the short-time limits,t@(a2D21p22)1/g and
t!(a2D21p22)1/g, respectively. This long-time behavior
especially remarkable because it presents an essential d
tion from Taylor dispersion results, where the long-tim
mean square displacement only differs from diffusion in
resting fluid through an enhancement of the diffusion coe
cient. In this generalized case, though, the leading term
long times is only velocity dependent and increases ast2g

instead oftg, the temporal characteristic dependence of Le´vy
dispersion in a resting fluid. We therefore encounter a ‘‘b
listic’’ kind of diffusion asymptotically independent of th
diffusion constantD as t→`. This strange behavior, as w
have argued in the preceding section, must be explaine
different arguments than those interpreting the enhancem
of the dispersion coefficient in standard Taylor diffusi
@16#. Now the arbitrarily long waiting time between biase
steps of the random walker facilitates the advancemen
part of the particles jumping in thex direction and the sepa
ration from the ‘‘frozen’’ particles, which enter arbitraril
long waiting periods. Therefore the presence of a w
defined microscopic time scale, the mean waiting time
tween steps, abruptly marks the transition from a proc
diffusing superdiffusively to a standard diffusive regime.
similar situation was encountered in@12#. It is important to
note at this point that this behavior, anomalous in the fra
of Taylor dispersion, is only due to the fact that in our sy
tem the particles remain still before proceeding with a n
jump.
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As a conclusion, in any experimental setup in accorda
with the scheme considered here~electronic transport in
amorphous materials, diffusion in fractal porous media,
teractive dispersion in gel electrophoresis@8#, etc.! the prop-
erty of microscopic scale invariance in time of the under
ing diffusion process should dramatically manifest in t
longitudinal dispersion of the tracer particles for sufficien
long times.

In this paper we have not applied the scheme to Le´vy
flights with infinite mean square step length, because we
cur some mathematical difficulties when defining the disp
sion of the random walker, much as it happened in@4#, but
with the additional difficulty of not having now a symmetr
problem in thex direction. Because of the intricate math
ematics involved, we will include the analysis of this situ
tion in a future publication.
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APPENDIX

Fox’s H function is defined via a contour integral o
Mellin-Barnes type@22#. Originally applied in statistics, it
arises in the physical sciences naturally in the solution
linear differential equations of fractional order@12,23,24#.
To avoid unnecessary confusion, we omit the explicit disc
sion of the mathematical definition and properties of Fo
H function. The interested reader may find the essential
@12,22–24#. At this point it suffices to note that the Fo
function is a very general class so that Laplace and Fou
transforms of anH function only change its parameter
Similarly, the fractional derivative of anH function is just
anotherH function. In addition, anH function is computable
by use of its series expansion.

In the mathematical manipulations following Eq.~33!, the
corresponding expression in the Laplace domain can be id
tified with a simpleH function, which can easily be Laplac
inverted due to the well-known theorems forH functions
@24#. Consulting the tables in@22#, one can identify the ob-
tained results with either the generalized Mittag-Leffler fun
tion Ea,b(x) or Maitland’s generalized hypergeometric~or
Wright’s! function pCq(x). These identities have the follow
ing form:

Ea,b~2x!5H1,2
1,1FxU~0,1!

~0,1!,~12b,a!
G , ~A1!



ow

ta-

1454 56ALBERT COMPTE, RALF METZLER, AND JUAN CAMACHO
pCqF ~a1 ,A1!,~a2 ,A2!,..., ~ap ,Ap!

~b1 ,B1!,~b2 ,B2!,..., ~bq ,Bq!
;2xG

5Hp,q11
1,p FxU~12a1 ,A1!,~12a2 ,A2!, . . . ,~12ap ,Ap!

~0,1!,~12b1 ,B1!, . . . ,~12bq ,Bq!
G .

~A2!

For the calculation of the asymptotic behavior, we can n
employ the standard properties ofH functions and its series
expansions.

For a small argumentx!1, both Fox functions can be
expanded in a series as follows:

Eg,11ng~2x!5H1,2
1,1FxU~0,1!

~0,1!,~2ng,g!
G

5
1

gxn H1,2
1,1FxU~n,1/g!

~n,1/g!,~0,1!
G

5 (
m50

`
~21!mxm

G„11~n1m!g…
,

is
1C1F ~2,1!

~11ng,g!
;2xG5H1,2

1,1FxU~21,1!

~0,1!,~2ng,g!
G

5 (
m50

`
~21!m~m11!xm

G„11~n1m!g…
. ~A3!

On the other hand, forx@1 large, we find the following
asymptotes:

H1,2
1,1FxU~0,1!

~0,1!,~2ng,g!
G; 1

G„11~n21!g…
x21, ~A4!

H1,2
1,1FxU~21,1!

~0,1!,~2ng,g!
G; 1

G„11~n22!g…
x22, ~A5!

whereby higher orders may be neglected for our compu
tions.
er,
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