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The asymptotic behavior of multichannel parallel relaxation processes for systems
with dynamical disorder is investigated in the limit of a very large number of
channels. An individual channel is characterized by a state v&atdrich, due to
dynamical disorder, is a random function of time. A limit of the thermodynamic
type in thex-space is introduced for which both the volume available and the
average number of channels tend to infinity, but the average volume density of
channels remains constant. Scaling arguments combined with a stochastic renor-
malization group approach lead to the identification of two different types of uni-
versal behavior of the relaxation function corresponding to nonintermittent and
intermittent fluctuations, respectively. For nonintermittent fluctuations a dynamical
generalization of the static Huber’s relaxation equation is derived which depends
only on the average functional density of channg[$V(t’')]D[W(t")], the chan-

nels being classified according to their different relaxation réfesw(t'), which

are random functions of time. For intermittent fluctuations a more complicated
relaxation equation is derived which, in addition to the average density of channels,
p[W(t")]D[W(t")], depends also on a positive fractal exponkntvhich charac-
terizes the fluctuations of the density of channels. The general theory is applied for
constructing dynamical analogs of the stretched exponential relaxation function.
For nonintermittent fluctuations the type of relaxation is determined by the regres-
sion dynamics of the fluctuations of the relaxation rate. If the regression process is
fast and described by an exponential attenuation function, then after an initial
stretched exponential behavior the relaxation process slows down and it is not fully
completed even in the limit of very large times. For self-similar regression obeying
a negative power law, the relaxation process is less sensitive to the influence of
dynamical disorder. Both for small and large times the relaxation process is de-
scribed by stretched exponentials with the same fractal exponent as for systems
with static disorder. For large times the efficiency of the relaxation process is also
slowed down by fluctuations. Similar patterns are found for intermittent fluctua-
tions with the difference that for very large times and a slow regression process a
crossover from a stretched exponential to a self-similar algebraic relaxation func-
tion occurs. Some implications of the results for the study of relaxation processes in
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I. INTRODUCTION

In the last two decades an enormous amount of experimental evidence has been accumulated
showing that the decay of the average survig@laxation function (/(t)) in many diverse
systems in condensed matter physics and in molecular biology follows the same stretched expo-
nential law of the Kohlrausch—Williams—WattkWW) type

d))=exd —(Q1)F], 1>8>0, (1.2)

whereg is a positive fractal exponent between zero and unity@nsl a characteristic frequency.
Equation(1.1) was first proposed by Kohlrauscm 1864 to describe the mechanical creep and
was later used by Williams and Watte describe the dielectric relaxation in polymers and by
WeibulP® for describing the failure data in reliability theory. More recently the KWW law has been
used to fit the data on remanent magnetization in spin gl4stesdecay of luminiscence in
porous glasses,the relaxation processes in viscoelastitityn the reaction kinetics of
biopolimers’ and on the dynamics of recombination kinetics in radiochemfskyrther applica-

tions include the description of the statistical distributions of open and closed times of ion chan-
nels in molecular biophysié®r even the description of the survival functions of cancer patiénts.

The ubiquity of the stretched exponential 1&tv1) has led to the idea that there should be a
kind of universal mechanism generating it which is independent of the details of an individual
process. An argument in favor of this opinion is the close connection between the KW.lBw
and the stable probability densities of theviyeypet'* which emerge as a result of the occurrence
of a large number of independent random events described by individual probability densities with
infinite moments. Many attempts of searching for such a universal mechanism for the occurrence
of the stretched exponential have been presented in the literature. A first attempt is a generalization
of a mechanism of parallel relaxation initially suggested bysko for the extinction of
luminescencE and improved by other authot3.A second model assumes a complex serial
relaxation on a multilevel abstract structure which emphasizes the role of hierarchically con-
strained dynamic¥! A third model is a generalization of the defect-diffusion model of Shlesinger
and Montroll® All three of these models have been carefully examined by Klafter and
Shlesinger® they have shown that in spite of the different details of the three models a universal
common feature exists which is the existence of a broad spectrum of relaxation rates described by
a scale-invariant distribution. A complementary approach of the universal features of the stretched
exponential which is mathematically oriented is based on the powerful technique of fractional
calculus and its connections with the theory of Fox functitins.

An interesting approach has been suggested by Htiersed on a careful examination of the
models used for the description of the extinction of luminescence he has derived a general relax-
ation function

(I(t))=exp[ - f:p(W)[l—exq—Wt)]dw , (1.2)

wherep(W)dW is the number of channels involved in the relaxation process and characterized by
an individual relaxation rate betwe&% andW+ dW. If the distribution of rates is self-similar and
obeys a scaling law of the negative power law type

p(W)dW~consww~1+4) dw, (1.3
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which is consistent with the general ideas of self-similarity suggested by Klafter and Shié§inger,
then Huber's equatioril.2) leads to the stretched exponential ldu1). The proportionality
constant in Eq(1.3 can be easily determined in terms of the fractal expor@@ind of the
characteristic frequenc§ entering Eq(1.1), resulting in

p(W)YdW=[T'(1—B)] 180 PW 1+A) dw, (1.3)

whereT'(x)=[5t* T exp(—t)dt, x>0, is the complete gamma function. Although Huber has
suggested that his equation might be generally valid for any disordered system with static disorder,
the validity range of his derivation, based on the approximation of a product by an exponential,
cannot be easily evaluated.

Recently two of the authors of the present paper have shown that Huber's equafois
exact for a Poissonian distribution of independent chanfieldoreover, it has been recently
shown that Huber’s equatiofl.2) also holds beyond the validity range of the Poissonian distri-
bution: it emerges as a universal scaling law for a uniform random distribution of a large number
of channels characterized by nonintermittent fluctuatfnghis result is consistent with the
general idea that the Huber's equatit?) and the stretched exponential relaxation leiwl)
derived from it can be generated by a central limit behavior of theyltgpe which expresses the
contribution of a very large number of weakly connected relaxation channels. The analysis pre-
sented in Ref. 20 also shows that Huber’s equatib@) is not the unique universal law which
emerges in the limit of a very large number of weakly coupled channels. For intermittent fluctua-
tions of the number of channels at least one supplementary scaling law exists, which is given by

(Z())=Tn f:p(W)[l—exp(—Wt)]dW’ (14
where the function
Zu(2)=H[(1+1H)z] Hy(H,(1+1H)2) 1.9

depends on the incomplete gamma functigix,u) = f5t*~* exp(—t)dt, x>0, u=0, andH is a
positive fractal exponent which characterizes the fluctuations of the number of channels. The
reciprocal value of the fractal exponentHl/is a measure of the intermittency of fluctuations. In
particular in the limit

1H—-0 (H—x), (1.6

the fluctuations are nonintermittent, the functigiy(z) becomes an exponential

lim Zy(z)=exp—z), 1.7

H—o

and the scaling law1.4) reduces to the Huber's scaling equatidnl). The derivation of the
intermittent scaling law1.4) is based on the searching for a fixed point by means of a stochastic
renormalization group approach technidténfortunately the renormalization group technique
used in Ref. 20 does not guarantee that the fixed point corresponding t{@.Bqgs unique, and
thus other intermittent limit scaling laws corresponding to other fixed points may also exist.

By assuming that the distribution of relaxation rates is given by the scale-invariaft J&y
the intermittent generalizatiofi.4) of the Huber's equation leads to the relaxation law

(/(D)=H(Qt) A1+ 1H) " Hy(H,(QU) A1+ 1H)), 18

which for small times reduces to a stretched exponential

J. Math. Phys., Vol. 37, No. 5, May 1996

Downloaded-18-Nov-2000--t0-18.19.0.171.-~Redistribution-subject-to-AlP-copyright,~see-http://ojps.aip.org/jmp/jmpcpyrts.html.



2282 Vlad et al.: Universal behavior for dynamical disorder

(Z(O))~exd —(Q)F], t<Q7?, (1.9
and for large times it is given by a negative power law
(ZW)~T(1+H)Qt) PHa+1H) M, t>Q71, H=finite. (1.10

As the fractal exponertil increases, the intermittent nature of fluctuations becomes less and less
pronounced, the stretched exponential portion of the relaxation funefic given by Eq.(1.8)
becomes longer and longer and the power law tail becomes shorter and shorter; eventually in the
limit H—oo, corresponding to nonintermittent fluctuations, the whole relaxation fun¢tign)

can be represented by a stretched exponential.

All these attempts at coming up with a general derivation of the stretched exponential are
based on the assumption that the disordered distribution of channels is static, i.e., that an initial
fluctuation of the number of channels characterized by different relaxation rates is frozen forever;
during the process of relaxation the distribution of channels remains invariant and described by the
static density functiorp(W) dW. A channel initially characterized by a relaxation ratéis
supposed to be characterized by the sameWasd any time in the future. Although reasonable for
some problems of condensed matter physics, the validity of this assumption is questionable in
molecular biology. In the case of protein—ligand interactioasd of ion channel kinetiésthe
distribution of relaxation channels with different rates is due to the conformational fluctuations of
protein molecules which have a dynamical nature and thus the fluctuations of the numbers of
channels characterized by different relaxation rates are continuously generated and destroyed by
thermal agitation.

The study of rate or relaxation processes with dynamical disorder is an active field of applied
statistical physic?~26 Although at times the possible connection between the stretched exponen-
tial relaxation and the dynamical disorder has also been consifielitith, attention has been paid
to the derivation of dynamic generalizations of the stretched exponential law which emerge in the
limit of a very large number of reaction channels. The purpose of this paper is the searching for
such universal scaling laws which are dynamical analogs of the general static limitll&vand
(1.4). The starting point of our approach is the theory developed in Refs. 19 and 20 in which a
general approach of rate processes with dynamical disorder has been suggested on the basis of the
theory of random point process&sin Ref. 19 in the particular case of Poissonian channels a
dynamical generalization of the Huber’s equatidr?) has been suggested

1—ex;{—J'0tW(t’)dt’)H, (1.1)

where, due to dynamical disorder, the relaxation rate corresponding to an individual channel is a
random function of timeN=W(t'), t=t'=0, p[W(t')]D[W(t')] is an average functional den-

sity of channels characterized by different random functidhsW(t'), D[W(t')] is a suitable
integration measure over the space of functigi@’), and [ stands for the operation of path
integration. In the following we shall try to derive the dynamic anatbg1) of Huber’s law as a
universal limit expression which emerges in the limit of a very large number of weakly interacting
channels. We shall also try to derive a universal dynamical intermittent law which is the analog of

the static scaling lawl.4):
t
1—ex —fW(t’)dt’
0

Another objective of the article is the application of the universal laiv$1) and(1.12 to the
particular case of a self-similar dynamical distribution of channels which is the analog of the static

</’(t)>=expr—f f p[W(t")JDIW(t")]

<ﬂm=%4ffMWWHMWWH }. (1.12
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equation (1.3'). Carrying out this program would lead to dynamical generalizations of the
stretched exponential layl.1) and of its intermittent generalizatiqid.g).

The structure of the paper is as follows. In Sec. Il we give a general formulation of the
problem in terms of a functional generalization of the theory of random point processes. In Secs.
Il and IV the approach developed in Sec. Il is used for the derivation of the relaxation functions
(1.11) and(1.12 as universal limit laws for nonintermittent and intermittent fluctuations, respec-
tively, valid for a very large number of weakly interacting relaxation channels. In Sec. V explicit
dynamical generalizations of the stretched exponential law are derived by computing the path
averages in Eq91.11) and (1.12 in the particular case of a stationary self-similar dynamical
distribution of relaxation channels. In Sec. VI a comparative numerical analysis of the relaxation
equations for static and dynamical disorder is presented. Finally in Secs. VIl and VIII some
possibilities of application of our approach are analyzed and some open questions are pointed out.

IIl. FORMULATION OF THE PROBLEM

We consider a relaxation process in which a randosually very largenumber of relaxation
modes are involved. By following the usual homenclature in nuclear physics and molecular dy-
namics we shall call these modes relaxation channels. The relaxation channels are abstract entities
which are characterized by different state vector@’), x,(t'),..., t=t'=0, which, due to dy-
namical disorder, are random functions of time. The relaxation channels should not be mistaken
for the actual ion channels crossing a cell membrawéjch are concrete objects.

The stochastic properties of the state vector@’),.. xy(t') attached to the different indi-
vidual relaxation channels can be described by a functional generalization of random point pro-
cesses. A slightly different type of functional random point process has been suggested in Ref. 19.
For describing the dynamics of the relaxation channels we introduce a set of grand canonical
Janossy probability density functionals

Qo QnIXa(t'), ... Xn(t")ID[X ()] - D[xn(t")], 2.1

with the normalization condition

1
Qo+ X NI Jf Qn[Xq(t"),. .. xy(t)ID[xq(t")]---Dxn(t)]=1. (2.2
N=1 NI

Here Qu[Xy(t"),... XNt ") ID[X4(t")]---D[xn(t")] is the probability that there afg relaxation chan-

nels and that theshdl channels are characterized by state vectors closg(td),...xy(t') and
D[x(t")] is a suitable integration measure over the space of funcktins This type of descrip-

tion is based on the implicit assumption that for a given realization of the process the total number
N of channels is a random quantity which does not change in time. The initial nulhlmér
channels is randomly chosen and then kept constant and only the random wetors. xy(t')

are variable in time. An alternative description of the stochastic properties of the relaxation
channels is given in terms of the generating functional

/\[1°[X(t’)]]=Qo+N§1 % W”'WQN[Xl(t,)!---rXN(t,)]

XD[xg(t") ] DIxn(t) I Ixq ()] FIxn ()], (2.3

wheref[x(t')] is a suitable test functional. The main advantage of using the generating functional
A[f[x(t")]] is that it can be written in a form independent of the integration med3{ix&')],
which is generally unknown.

J. Math. Phys., Vol. 37, No. 5, May 1996
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2284 Vlad et al.: Universal behavior for dynamical disorder

Considering a time interval of lengthwe assume that for each chanoet1,... N, there is a
fluctuating probability of decap,(t). This probability depends on the whole previous history of
the channel, that iga,(t) is a functional of all previous valueg(t'), t=t’'=0 of the state vector:

Pu(t) =p[x,(t");t]. (2.9

A realization of the survivalrelaxation function /(t), that is, the probability that the relax-
ation process has not occured in a time interval of lemgth simply given by the product of the
complementary probabilities-1p[x,(t’);t] attached to all channels, which expresses the prob-
ability that none of theN channels has led to relaxation:

N

/=11 {1-plx(t)0)]- 29

The average relaxation functige((t)) can be computed by evaluating the average of the fluctu-
ating function/(t) in terms of the grand canonical Janossy probability density functid@als
which describe the random evolution of the channels:

|
(7(1))=Qo+ Z NI f Qn[Xa(t"), ... Xn(t ) ID[Xq(t")]- - -D[xn(t")]

X F[xg(t')]+ Fxn(t )]uﬂl {1—pIxu(t);t]}
= A[f[x(t")]=1—p[x(t');t]], (2.6)

where we have used the definitih3) of the generating functional[ f[x(t")]]. It follows that the
evaluation of the average relaxation functi@f(t)) reduces to the computation of the generating
functional A[f[x(t")]], which describes the random couplings between the different relaxation
channels, and to the computation of the probabififx(t');t], which describes the individual
behavior of a single channel.

For relating the generating functional[ f[x(t")]], to the fluctuation dynamics of the number
of channels we introduce the fluctuating functional density of channels

7[x(t")ID[x(t")]  with N=f f 7[x(t")ID[X(t")], (2.7

characterized by a random vector n&ér') and the corresponding characteristic functional

G[K[X(t')]]=<exp(i ffK[X(t')]n[x(t’)]D[X(t’)] > (2.8

whereK[x(t")] is a suitable test functional. The fluctuations of the functional density of channels
7x(t")]D[x(t")] are described in terms of the corresponding cumulants

nlxa(t)] - nlxm(t)H D)), m=1.2,..., (2.9
which are assumed to exist and be finite. The characteristic funct®ft&x(t’)]] can be ex-
pressed in terms ok 71X, (t")]-- 7 xn(t") ), m=1,2,..., by means of the cumulant expansion

J. Math. Phys., Vol. 37, No. 5, May 1996
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Gkt T= 3, o [ [ o [ bt KD

XD[xy(t")] - K[Xm(t") JD[Xm(t") ]. (2.10

For establishing a connection between the generating functigri@k(t’)]] of the functional
point process and the characteristic functioBaK[x(t')]] of the functional density of channels
7x(t")]D[x(t")], we write a realization of the density of channejx(t’)]D[x(t')] as a sum of
functional Dirac’s delta symbols

N

7[x(t")ID[X(t")]= ugl A[xy(t") =x(t")ID[x(t")]. (2.19

Equation (2.11) is a functional generalization of the well-known relationship from statistical
mechanics expressing the particle density fields as sums of delta functifesinsert Eq(2.11)

into the definition(2.8) of the characteristic function&[K[x(t")]], and compute the average in
terms of the grand canonical Janossy probability density functid@dls By using the definition

(2.3 of the generating functionah[f[x(t")]] after getting rid of the functional integral in the
exponent due to the filtration property of the Dirac’s functional symbol and computing the result-
ing sum, we obtain

GIK[x(t") 1= A[f[x(t")]=expliK[x(t")]D]. (2.12
It follows that the average relaxation functiéri(t)) can be expressed as
(7(1)=GIK[x(t")]=ib[x(t");t]], (2.13
where
b[x(t");t]=—In(1—p[x(t");t]), (2.14

is the bit numbe of the individual probability of nonrelaxation-dp[x(t’);t] attached to an
individual channel with a history characterized by the functi¢iri), t=t'=0. Equation(2.13 is

a dynamical generalization of a similar relationship derived in Ref. 20 for systems with static
disorder by using a different method that does not make use of the theory of random point
processes.

For deriving an expression for the probability of deqay(t’);t] attached to an individual
channel we generalize an assumption made for systems with static disorder by Hartteby
Vlad, Schafisch, and Macke§® We assume that a channel characterized by a state vectm
be either in an open state with a probabilitgk) or in a closed state with a probability-(x).
Following Ref. 20 we suppose that the state vegtof a channel belongs to a certain domain
of the state space which is simply connected and has the volume

Vs= de, (2.15

and that the probability(x) that the channel is open is simply given by
AX)=V*(x)/Vs, (2.16

whereV*(x) is a characteristic volume of a neighborhood of the position
J. Math. Phys., Vol. 37, No. 5, May 1996
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We assume that an open channel characterized by a state xéet®® rate of relaxation/(x)
that depends only on the state vectoiSince the state vectaris a random function of time, the
contribution of an open state to the individual probability of survivanrelaxation1—p[x(t’);t]
is given by

t
/[W(x(t’))]:eXp( - fOW(x(t'))dt') . (2.17)

The corresponding contribution for a closed state is simply equai[W(x(t’))]=1 and the
individual probability of survival p[x(t’);t] is given by the average of th W(x(t"))]-factor
corresponding to the two states

1- p[x(t’);t]=)\(x(t))exr{ — JOtW(x(t’))dt’ +1-N(X(1)), (2.18

from which we obtain the following expression for the individual probability of decay

p[x(t’);t]=¥:)) [1—exp{—f;W(x(t’))dt’“. (2.19

Now the average survival functiofr’(t)) is completely characterized by the collective sto-
chastic properties of the fluctuations of the numbers of channels, expressed by the cumulants
Uxq ()] Axm(t") D)) given by Egs.(2.9) or by the cumulant expansidi2.10 of the charac-
teristic functionalG[K[x(t")]] and by the behavior of an individual channel, characterized by the
probability of decay given by Eq2.19. For investigating the scaling behavior emerging in the
limit of a very large average numbéN) of channels

= [ [ @atemorx 1=, (2.20

we introduce a limit of the thermodynamic type for which both the total voliMuevailable in
the x-space and the average total num{de} of channels tend to infinity, but the average density
of channels,

e=(N)/Vs, (2.21)
remains constant
Vs, (N)—o with e=(N)/Vy=const. (2.22

For evaluating the different types of asymptotic behavior emerging in the (2 we assume

that the channels are weakly interacting, that is, as the total space volume increases to infinity,
Vs—o, the characteristic volumeg* (x,), V*(x,),..., of the neighborhoods of the different chan-

nels remain finite and constant; in other words, the increase of the total space wbjuines not

lead to an increase of the possible overlapping among the neighborhoods attached to the different
channels. This assumption of locality generates the two types of asymptotic behavior investigated
in Secs. Il and IV.

J. Math. Phys., Vol. 37, No. 5, May 1996
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lll. LIMIT BEHAVIOR FOR NONINTERMITTENT FLUCTUATIONS

We introduce the relative fluctuations of different orders:

Calxa ()]l xmlt)1))
TIEL (¢l xy(2) I

If the relative fluctuations[X;(t),....xpu(t') ], m=2, decrease to zero in the thermodynamic limit

(2.22

Crl X1(t") ... Xm(t) ]= , m=2. (3.1

Cr[X1(t"),... Xm(t")]—0, Vs ,(N)—oo, with e=constm=2,3,..., (3.2

then the fluctuations of the numbers of channels are nonintermittent. For investigating the asymp-
totic behavior of the survival functiok/(t)) for nonintermittent fluctuations in the thermody-
namic limit (2.22 we introduce the average probability density functional of the state ve@tor

of an individual channel,

(LX) INDIX(E)]
€X(1)ID[X()]= = , 33
TI (A IPIX(E)]

with

[ [ axenprxan- (3.4

and combine Eq¥2.10, (2.13, (2.14), (2.19, (2.20, and(3.1). We express the cumulants of the
functional density of channels in terms of the relative fluctuatiofig,(t’),... xm(t')] and of the
average probability density functionglx(t")]D[x(t’)]. By inserting the resulting expression for
the cumulants into the functional Taylor expansi@l0 for the logarithm of the characteristic
functional G[K[x(t")]] and expressing the average relaxation functigit)) from Egs.(2.13),
(2.14), and(2.19 we obtain

</(t)>=exl{ > —,ff"'ffCm[Xl(t’),---,Xm(t')]S[Xl(t’)]D[Xl(t’)]---§[Xm(t’)]

€
m=1 M

><D[xm(t’)]1_[l Vsin l—w 1—ex;{ —ftW(xu(t’))dt’)“H, (3.5
u= S, 0
where

From Egs.(2.22, (3.2, (3.5, and (3.6) it follows that for nonintermittent fluctuations in the
thermodynamic limit in Eq(3.5) only the term corresponding ta=1 survives and the expression
for the average survival functiofr’(t)) reduces to the dynamical generalizatidnl1) of Huber's

equation:
t
1—ex —fW(t’)dt’
0

] asVs ,(N)—o,e=const,

(/(U%exp{—f fp[W(t’)]D[W(t')]
L (3.7

where
J. Math. Phys., Vol. 37, No. 5, May 1996
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P[W(t')]D[W(t')]= { [ v mﬂm>mwtnﬂwa>mwa»ﬂmwan
— (3.9

is the average density of channels involved in the relaxation process, the channels being classified
according to their relaxation rat&g(t’), t=t'=0.

IV. LIMIT BEHAVIOR FOR INTERMITTENT FLUCTUATIONS

For the study of the asymptotic scaling behavior of the average survival function for inter-
mittent fluctuations a renormalization group technique should be used. In the following we apply
a probabilistic versioft of the Shlesinger—Hughes stochastic renormalization proc&dutéch
has been recently applied to the study of space-dependent epidemic processes with high
migration®> The method consists of starting out from an initial characteristic functional
G[K[x(t")]] of the functional density of states for which the fluctuations are nonintermittent and
constructing, by means of a succession of decimation processes, a renormalized characteristic
functional G[K[x(t")]] for which the fluctuations of the density of states are intermittent. The main
steps of such an approach are presented in another context in Ref. 21 and a simplified derivation
is also presented in Ref. 32. Here we give only the final expression for the renormalized charac-
teristic functionalG[K[x(t")]]:

GIK[x(t")]]=H J'OleflG[— in[1—z[1—exp(iK[x(t")])]]] dz;H>0, 4.2

whereH is a positive fractal exponent similar to the one entering the static equétighs(1.10.

For evaluating the limit scaling law for the average relaxation functioft)) corresponding
to the renormalized expressi@d.1) we expand in Eq(4.1) the nonrenormalized characteristic
functional G[K[x(t")]] in the cumulant expansiai2.10 and express the corresponding cumulants
in terms of the nonrenormalized relative fluctuationgx,(t');...x,(t')] and in terms of the
average renormalized density of channels

=N BN @2

Here we have used the relationship between the nonrenormalized average number of ¢hgnnels
and the corresponding renormalized averagg:

(NY=(NYH/(H+1). (4.3

The relationshig4.3) can be derived from the renormalization group equatib) by means of
functional differentiation followed by the application of the relationships

51n G[K=0]
Ny Jj«ﬂmupmwtn JJ LT DX @4
~ ([ [ [ 6InG[K=0
M- [ [xempixan- [ [ 2R = oo @5

which can be derived by expanding the characteristic functicBp x(t")]] anda[K[x(t’)]] in
cumulant series of the typ@.10.
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__ Byusing Egs(2.10), (2.13, and(2.14) applied for the renormalized characteristic functional
G[K[x(t")]] combined with Egs(4.1) and(4.2) and using the same steps as in Sec. lll we obtain
the following expression for the average relaxation functigft) ):

0

(/(t))szOle*l dz ex;{ > %

m=1

m

f...Wcm[xl(t'),...,xm(t’)]f[xl(t’)]

1+1
el 1y
m

XD[xg(t")]- f[Xm(t’)]D[Xm(t’)]ul:[l 1-2V* (x()(Vx)

1—ex% - fotW(xu(t’))dt’) ) ” , (4.6

from which, by taking into account the nonintermittency conditié®®) for the nonrenormalized
relative fluctuations of the density of channels we obtain the following scaling law in the thermo-

dynamic limit (2.22:
t
l—ex;{—fOW(t )dt )“

as V2,<'N'>—>oo with s=<N>IV2=const, 4.7

VE In

X

<ﬂm~%4ffmwwnmwwn

where the functionZy(z) and the functional density of channels involved in the relaxation
processp[W(t')]D[W(t")], are given by Eqgs(1.5 and(3.8), respectively.

Equation(4.7) justifies the conjecturél.12 made without proof in Sec. I. This equation is the
dynamical analog of the intermittent scaling l&v4) derived for systems with static disorder in
Ref. 20. Just like in the static case the reciprocal value of the fractal expdnéwt, is a measure
of the degree of intermittency of the fluctuations of the number of channels. In particular in the
limit H—oo the fluctuations become nonintermittent and Ef7) reduces to the dynamical ana-
logue(1.2) of Huber's equation. The renormalization group approach for dynamical disorder used
in this paper has the same drawback as the similar static approach developed in Ref. 20: it does not
guarantee that the limit scaling relationsl#p7) is the unique asymptotic law which emerges in
the thermodynamic limit for intermittent fluctuations. The renormalization group procedure intro-
duced in Ref. 21 does not provide a hint that the fixed point corresponding to4Hg.is the
unigue fixed point of the problem. It is possible that further research may lead to other scaling
laws characteristic for intermittent fluctuations.

V. DYNAMICAL GENERALIZATIONS OF STRETCHED EXPONENTIAL

The main difficulty related to the application of the dynamical scaling 1688 and(4.7) is
connected to the evaluation of the path integral:

1—exp<—f(:W(t’)dt’”. (5.7

The evaluation of such path integrals would be trivial provided that the functional density of states
p[W(t")]D[W(t")] would have a Gaussian behavior. Unfortunately a Gaussian form for
p[W(t')]D[t")] must be ruled out because it does not include the static power law distribution
(1.3") as a particular case.

A formal solution of the problem can be given by introducing an average probability density
functional of the relaxation rate&/(t’), t=t'=0:

0= [ stwceyiopwie))
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e[ W(t")ID[W(t")]=p[W(t")ID[W(t")J/{N*), (5.2
with the normalization condition

f f e[W(t")ID[W(t")]=1, (5.3

and where

(N*>=ffp[W(t’)]D[W(t’)]ISJ fV*(X(t))f[x(t')]D[X(t')] (5.4

is the average effective number of channels involved in the relaxation process. Generally the
average effective number of channels involved in relaxat{bii,), is at most equal to the total
average number of channe{$y). By using the expressioi®.2) for the average probability density
functional [ W(t')]D[W(t')], the factorl(t) can be expressed in terms of a dynamical average
of the random function

/{W(t')]zexp( —fOtW(t’)dt’> (5.5

[see also Eqg(2.17)]. We have
(1) =(N* {1 (Z/IW(") D)}, (5.6)

where the dynamical average&[W(t')]) is given by

<4W(t’)]>=J J @[ W(t")ID[W(t")]ATW(t")]. (5.7

In this paper we limit ourselves to the simplest case of dynamical disorder for which the random
process corresponding to the average probability density functigiva{t')]D[W(t")] is Mar-
kovian. Moreover we consider that the average effective number of channels involved in the
relaxation procesgN*), is time independent:

(N*)=const. (5.8

Under these circumstances the probability density functigaf&V(t’)]D[W(t’)] can be repre-
sented as

@[W()ID[W(t)]= Tm [@(Win;mAtWi_1;(m—1)A)dWr, -~ o(Wo; 24t Wy At)dW,

m— o

(At—0)
X @(W1;At|Wo;0)dW;og(Wo)dWp],  t=t'=0, (5.9
where
m=t/At; (5.10
o W)dW  with f es(W)dW=1, (5.11)
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is an average one-time stationary probability density of an individual relaxation rate attached to a
given channel corresponding to static disorder and

e(W;t|W';t")dW  with fcp(W;t|W’;t’)dW:1 (5.12

is the average conditional probability density of the relaxation Vdtat timet provided that at
timet’ the relaxation rate wad/’. For a Markov process both, (W) and ¢(W;t|W’;t") are the
solutions of an evolution equation of the type

de=Lo, (5.13

wherel is a linear Markovian evolution operator of the Liouville, Fokker—Planck, or the master
type. In this case the probability, (W) is the stationary solution of Eq5.13, whereas the
conditional probability density(W;t|W’;t") is the Green’s function of the equati§5.13 cor-
responding to the initial condition

e(W;t=t"|W';t")=S(W-W"). (5.19
For the above-mentioned Markovian systems there is a general method for computing dy-
namical path averages of the tyf&7) without the explicit evaluation of a path integral. The
method was suggested by Lax in the sixtiés connection with certain problems of quantum
optics and rediscovered independently by Van KamiénFor a recent application of this tech-
nique to the study of a rate process with dynamical disorder, the passage over a fluctuating
activation energy barrier, see Ref. 26. The idea is based on the observation that a realization of the

function #(t)=#[W(t')] given by Eq.(5.5 obeys a stochastic differential equation with a ran-
dom coefficient:

dA(t) , . ,
—gr =" WOAD  with #(0)=1. (5.19

Since Eq.(5.19 is local in time and the coefficieW/(t) is Markovian it follows that the pair of
random variablegW(t),#(t)) is also Markovian and the one-time joint probability density,

P(W,#:t)dWds  with ffp(w,/;t)de,f:L (5.16

obeys a compound stochastic Liouville equatior>
IWP(W,4t) =0 AWAP(W,#;t)} + LP(W, 1), (5.17
with the initial condition
P(W,/:t=0)=8(/—1) o (W). (5.18

The dynamical average[W(t')]) can be expressed as an average value corresponding to the
joint probability densityP(W,#t):
(ATW(t")])= f f ZP(W, 7 t)dWd/'= f F(W,t)dW, (5.19
where
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F(W,t)=f AP(W,/:t)dA (5.20

is a marginal average. By multiplying Eq%.17) and(5.18 by # and integrating over” after a
partial integration we obtain a closed equation for the marginal avdr@gét):

F(W;t) +WF(W;t)=LF(W;t), (5.2)
with the initial condition
F(W;t=0)=@s(W). (5.22

From the above considerations it turns out that for a stationary Markovian average random
process the evaluation of the average survival functi6(t)) reduces to the evaluation of the
marginal averag€ (W,t) by solving the evolution equatiofs.21) with the initial condition(5.22
followed by the application of Eq$3.7), (4.7), (5.1), (5.6), and(5.19.

For applying the suggested Markovian approach we should come up with a suitable definition
of the Markovian evolution operatdr. The simplest possible choice would be a Liouville operator
of the type suggested in Ref. 26 determined by starting out from the stationary probability density
osi(W) corresponding to the static density of staf¢s3') attached to a stretched exponential of
the type(1.1) and by assuming that the regression of the fluctuations of the relaxation rate is
described by a generally time-dependent regressionaiéile Now we notice a minor difficulty
related to the self-similar fornil.3') of the static density of statggW)dW: due to the infrared
divergence ofp(W) given by Eq.(1.3") at W=0, the average effective numbgi*) of channels
involved in the relaxation process is infinite:

(N*)= f:p(W)dW= f:[l“(l—B)]*l,BQBW%l*B)dW:oo_ (5.23

Due to the time independence conditit®8) for (N*), the divergent behavior carries over for
systems with dynamical disorder. This divergence is, however, spurious because the correspond-
ing integral expressions for the average survival functis(t)) are well behaved. The problem
can be solved by introducing an infrared cut@¥ #0 and by passing to the limitv* —0 after
performing the computations.

For a cutoff valueW* #0, the total effective average number of chandl$) is finite:

® O \8
<N*>=fw*p(W)dW=[F(l—ﬁ)]1(W) : (5.24)

and the stationary probability densigy (W) dW is given by
s W) dW=p(W)dW/{N* )= g(W*)PW~ (1 Bgw, (5.25

which obviously fulfills the normalization condition

f;k s W)dW=1. (5.26

By following the approach suggested in Ref. 26 we expregdV) as the normalized solution of
a Bloch-like equation

d
,3( Bosd W)+ = [Wes(W)] | =0, (5.27)
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and suggest a dynamical generalization of (527 depending on the regression frequengy):

de B J _
—Bo() et 5 (We) | =Le, (5.28

=
where the Liouville operatal. is given by

L...= = Bo(t)

P
ﬂ...+m(w...)}. (5.29

All solutions of the Liouville equatior{5.28 should be properly defined, that is, they should be
non-negative and conserve the normalization to unity at any time

(p?O;fW*go dw=1. (5.30

By integrating Eq(5.28) term by term it is easy to check that it conserves the normalizatian of
to unity provided that the following boundary condition is fulfilled:

o(W=W*:t)=B/W*; =0, (5.30)

Concerning the non-negativity ap we express any solution of E¢5.28 in terms of the
Green'’s functione(W;tW’;t'), which is the solution of Eq(5.28 with the initial condition
(5.14), and of the initial conditionp(W;t=0):

o]

<p(W;t)=fw*@(W;tIW’;O)so(W’;t:O)dW’- (5.32

The Green’s functionp(W;t|W’;0) can be easily evaluated by integrating 5§28 along the
characteristics with the initial conditiofb.14) applied fort’=0 and with the boundary condition

(5.3)), resulting in
*x\ 1+ 8
W* exp(ﬁﬂw(t’)dt’) —W}(%)(WW)

exp( —,BZJOtw(t’)dt’)

wW-w’ exp(,BJ:w(t’)dt’”, (5.33

e(W;t|W’;0)=h

+h

t
W—W* exp(ﬂjow(t’)dt’>

X 0|

whereh(x) is the Heaviside’s step function. From E@5.32 and(5.33 we obtain
W;t)=h| W* ft Ndt' | —-W AW
e(W;t)= exp B Ow(t) UI=WHw | W

t t
xexp{—ﬁzf w(t")dt’ Wexp(—ﬁf w(t’)dt’);tzo
0 0

Both Egs.(5.33 and (5.34) conserve the non-negativity and normalization conditi¢®80
provided that the initial probability density(W;t=0) is non-negative and normalized to unity
and is equal to zero for any rate smaller than the cutoff villlzeW*:

1+8
+h

t
W—\N*(,Bfow(t’)dt’”

® . (5.39
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©

o(W;t=0)=0; fw*<p(W;t=0)dW= 1; o(W<W*:t=0)

0. (5.35

By applying the above-mentioned Markovian approach it follows that the marginal average
F(W,t) is the solution of the partial differential equation

F(W, 1) + WF(W,t) = — Bw(t)[ BF(W,t) + Iy WFE(W,1)]], (5.36
with the initial condition
F(W,t=0)=B(W*) }(W*/W)1*+5 (5.37)
By integrating Eq.(5.36 by means of the method of characteristics we can express the marginal

averagd-(W,t) in terms of an arbitrary function. By determining this arbitrary function from the
initial condition (5.37) we obtain

W* 1+8 t
F(W,t)z,B(VV*)l(W) exp[—Wgﬁ(t)fogB(t’)dt’}, (5.38

whereg(t), the attenuation factor of the regression of fluctuations of the relaxation rate attached
to a given channel, is given by

dg(t
Y —wtvgn, g(0)=1, (539
that is,
g(t)=ex% — ftw(t’)dt’>. (5.40
0

From Egs.(5.2), (5.6), (5.19, and(5.38) if follows that the exponeni(t) is equal to

B w 1— —W Bt )dt’
BQ J exd —WgP(t) o9 A(t")dt’] W 5.49

(1-8) Jw WA

As expected in the limiww* —0, the exponent(t) is well behaved and in this limit the integral
overW in Eq. (5.41) can be explicitly computed, resulting in

I('[)=F

B

t
I(t)= Qgﬁ(t)fogfﬁ(t')dt’ (5.42)

From the above computations it turns out that for the model considered in this section the univer-
sal scaling law$3.7) and(4.7) for dynamical nonintermittent and intermittent fluctuations become

‘ t B
</<t>>=exp{— QgA(t) fog*ﬁa')dt' } (5.43
and
) t
</(t)>=;7H[ Qgﬁ(t)fog‘ﬁ(t’)dt’“, (5.44
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respectively. Equationé.43 and(5.44) are dynamical analogs of the stretched exponential law
(1.2) and of its static intermittent generalizatioh.8). The concrete form of these two equations
depends on the dynamics of the regression of the fluctuations of the relaxation rate expressed by
the attenuation functiog(t). A comparison between the relaxation behavior corresponding to
some important types of dynamical disorder and the relaxation behavior of the similar systems
with static disorder is presented in the following section.

VI. STATIC VERSUS DYNAMICAL DISORDER

The dynamical relaxation equatiofs.43 and(5.44) include the stretched exponentidl.1)
and its static intermittent analog(#.8) as particular cases corresponding to a regressionu@je
equal to zero for which there is no attenuation of the fluctuations

o(t)=0, g(t)=1, (6.2

and an initial fluctuation of the relaxation rate is frozen forever.

In this paper we limit ourselves to the study of only two types of dynamical disorder. The first
case corresponds to a fast regression of the fluctuations for which the frequépdg constant
and the attenuation functiag(t) is exponentially decreasing in time:

w(t)=wg=const and g(t)=exp — wqt). (6.2

The second case corresponds to a self-similar regression process described by slowly decaying
functionsw(t) andg(t) which obey negative power laws of time &st;:

w(t)=al(t+ty)~alt as t>t,, (6.3
g(t)=[to/(t+1tp)]*~(to/t)* as t>ty, (6.4

wherety,>0 is a possibly very small but, however, different from zero time constant which has
been introduced in order to avoid the divergence of the frequesity in the limit t—0. The
relationships between these two cases can be clarified by requiring thababe regression rates
o(t) have the same values, resulting in

w(0)=alty=wg. (6.5
By using Eq.(6.5) the relationshif6.4) for the attenuation functiog(t) becomes
g(t)=[a/(wot+ a)]“. (6.6

For small values o# the functiong(t) given by Eq.(6.6) has a long tail of the negative power law
type. As the fractal exponentincreases the tail of the attenuation functigt) is getting shorter
and shorter and in the limik—~ we recover the exponential decay |&6:2).

In order to outline the analogies and differences between the relaxation processes in systems
with static and dynamical disorder we compare the static relaxation equétidhsnd (1.8) for
nonintermittent and intermittent fluctuations, respectively, with the dynamical relaxation equations
(5.43 and (5.44 applied in the case of the attenuation functi@{$) given by Egs.(6.2) and
(6.4). It is also of interest to compare the probability densities of the relaxation time

A7/ (1)
ot

Y(t)dt=—

}dt, (6.7

the corresponding moments
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im tm</(t)>+mf:tm_l(/(t»dt, (6.9

—

(tm = J:tmw(t)dt=tl

and the effective rates of relaxation

Weit(1) = (/{7 (1) = — 3, In(/ (1)). 6.9

For computing these functions we express the average relaxation functions for nonintermittent and
intermittent fluctuations in terms of the expone(it) given by Eq.(5.42):

(Z(t)=exd (1], (6.10
(Z(0)=_7ull(D)]. (6.11)

The application of Eqs1.5), (5.42), and(6.7)—(6.11) leads to the following relationships for the
functions ¢(t) andW,gx(t):

P(H)=q()l()exd —1(1)], (6.12
Wer(D)=q(t)1(1), (6.13

for nonintermittent fluctuations and

Y()=a(t) 7u[1 (O] a1 (D], (6.14
Wer(t) =a(t).7ul1(1)], (6.19

for intermittent fluctuations. Here the functiogét) and.”,(z) are given by

dlin It t -1
t)=%=ﬁ(gﬁ(t) fg’*(t’)dtﬂ —ﬁw(t)], (6.16
0

o "ol exd-z(1+1H)] |7t

Tu(2)=(H+1){1+ 1+ﬁ y[H+1;z(1+1/H)]] (6.17

For applying these equations for systems with nonintermittent or intermittent static disorder
and for systems with nonintermittent or intermittent dynamical disorder with exponential or self-
similar regression we should evaluate the functib(y and q(t) corresponding to all these
particular cases. After some computations we come to

I(H)=(Qt)?, q(t)=48lt, (6.18
for static disorder;

[ Q[1-exp(—weB)]|#

[woB] ' 619

q(t) = B%wo exp— woBH[ 1—exp(—woft)] ™4, (6.20

for nonintermittent and intermittent dynamical disorder with exponential attenuation; and
1) ={Q*[t+to—to[to/(t+10) ]*F}, (6.21)

q(t) = B2a(to) ~to/ (t+1t) ] {1—[to/(t+1) 11} 74, (6.22
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TABLE I. Limit behavior of the average relaxation functigi(t)) for different types of static and dynamical disorder for

small and large times.

Case (I(t)) for small times (I(t)) for large times
(1) Nonintermittent _ _
static disorder ex —(Q1)’] ex -~ ()]
(2) Nonintermittent
dynamical disorder exp-(Q1)7]; ext — (Q/Bwy)?]=const;
with exponential Qt<QVw Ot=>0/wy
regression
(3) Nonintermittent
dynamical disorder eXp-(Qt)7]; exd—(Q*t)7];
with self-similar Ot<Oty Ot> Oty
regression
(4) Intermittent exp—(Qt)7]; (Qt) PR+ 1H) T (1+H);
static disorder at<1 at>1
(5) Intermittent (@ (Qt) PR+ 1MH) HT(1+H);
dynamical disorder exp-(Qt)7]; Qwy>Qt>1
with exponential Qt<Q/wy; Qt<1 (b) (Q/Bwg) AR+ 1H) HT (1+H);
regression Qt>0we>1

(6) Intermittent

(@ (Qt) AU+ 1H) T (1+H);

dynamical disorder exXp-(Qt)7]; Ote>0t>1
with self-similar Qt<1;0t<0Ot, (b) (Q*t) AR+ 1H) T (1 +H):
regression Ot>0t>1

for nonintermittent and intermittent dynamical disorder with self-similar attenuation. Here
QO*=Q/(1+aB). (6.23

By combining Eqs(6.7)—(6.22 we can derive six sets of functiodg'(t)), (t), andWx(t)
corresponding to nonintermittent and intermittent static disorder, to the two types of nonintermit-
tent dynamical disorder, and to the two types of intermittent dynamical disorder considered in this
article. The resulting equations are rather complicated and to save space they are not given here.
We present only two tables with the different types of limit behavior of these functions for short
and large times, respectively.

Table 1 shows the asymptotic behavior of the average survival fungdtfoy) in the six cases
considered. For nonintermittent fluctuations the dynamical disorder decreases the efficiency of
relaxation both for exponential and self-similar attenuation. The effect is much more pronounced
for exponential attenuation for which the relaxation function tends towards a positive value dif-
ferent from zero as— and thus the relaxation process is never complete, not even after an
infinitely large period of time. For self-similar attenuation this decrease in efficiency is less
pronounced. An interesting effect in this case is that both for small and large times the relaxation
process is described by stretched exponentials with the same exg®aadtdifferent character-
istic frequencies() and Q* =Q/(1+aB)< ), respectively. For large times the decrease of effi-
ciency due to dynamical disorder is displayed by the decrease of the characteristic frequency from
Q to O*. Similar patterns occur in the intermittent cases for which the dynamical disorder also
slows down the relaxation process. For exponential attenuation after an initial stretched exponen-
tial behavior for large times a self-similar region exists for which the relaxation function is
described by a negative power law of time. The self-similar region is eventually followed by a
horizontal asymptote of the relaxation function which has a positive residual value even in the
limit t—oo, a situation which corresponds to incomplete relaxation. Just as in the nonintermittent
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TABLE Il. Limit behavior for small and large times of the effective relaxation Mkg(t) and the values of the positive

moments(t™), m=1, of the relaxation time for different types of static and dynamical disorder.

Case

Weﬁ(t)
for small times

Weﬁ(t)

for large times

(t™,m=1

(1) Nonintermittent

static disorder BOPEL BOPEL Q~"T'(1+m/B) =finite
(2) Nonintermittent
dynamical disorder BOAE L, ~0; "
with exponential Ot<Ww, Qt>0/w,
regression
(3) Nonintermittent
dynamical disorder BOAFL BO* AP L finite
with self-similar Qt< Oty Qt=>0t,
regression
(4) Intermittent BOAFL HI/t; "
static disorder 0t<1 Ot>1
(5) Intermittent BOAFL (@) HI/t;
dynmical disorder Qt<Qlwy; Q<1 Qw>0t>1 e
with exponential (b) ~0;
regression Qt>0/wg>1
(6) Intermittent (a) H/t;
dynamical disorder BOAFL Qte>Ot>1 "
with self-similar 01<1;0t< 0Ot (b) H/t;
regression Ot>0te>1

case for self-similar attenuation, the decrease in efficiency of the relaxation process is less pro-
nounced in comparison with the case of exponential attenuation. For small times a stretched
exponential behavior exists with a characteristic frequency

Q** =(). (6.29

For large times both the intermittent behavior and the regression of fluctuations lead to the slowing
down of the relaxation process. The intermittent behavior is dominant leading to a long time tail
of the average survival function.

Table Il displays the asymptotic values of the effective relaxation\ttgt) for small and
large times as well as the values of the positive moments of the relaxation time. The expressions
for the effective relaxation rate are consistent with the data presented in Table | for the average
survival function. A survival function of the stretched exponential type corresponds to a negative
power law function of time for the effective relaxation rate of the type

W~ L1 A, (6.25

Similarly a power law tail of the survival function corresponds to an asymptotic hyperbolic time
dependence of the effective relaxation rate

We~ 1t as t—oo, (6.26

whereas a positive residual value of the relaxation function for large tifies)>0, corresponds
to an asymptotic value of the effective relaxation rate equal to zero:

We~0 ast—om, (6.27
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FIG. 1. (@ The dependence of the average survival functit(t)) on the dimensionless tim@t and on the relative
frequency of regressiomy/() for nonintermittent dynamical fluctuations with exponential attenuat®n0.6. (b) The
dependence of the average survival funct{bft)) on the dimensionless tim@t and on the attenuation exponentor
nonintermittent dynamical fluctuations with self-similar regress@n0.6 and(Q2t,=0.1.

The analysis of the values of the moments of the relaxation ftfi®, is of interest because
their divergence may be related to the possible statistical fractal behavior of the probability density
Y(t) of the relaxation time. To save space the asymptotic valuegtdfare not given in Tables
I and II; however, the asymptotic expressions#¢t) can be easily evaluated from these tables by
noticing that from Eq(6.9) we have

(1) = (1(1)) Wer(1). (6.28

Special attention is deserved by the investigation of the asymptotic behavior of the probability
densityy(t)dt of the relaxation time in the case when a residual value different from zero exists
for the average survival function, a situation which corresponds to incomplete relaxation. In this

case the probability density(t)dt of the relaxation time is apparently not normalized to unity
because we have

f:z/f(t)dtz - f:ata(t))dt:a(0)>—<|(oo)>:1—<|(so)><1. 6.29

The physical explanation of this result is the following: the fag¢t¢r)) expresses the proportion
of systems(particles which never relax. Notice, however, that the violation of normalization of
the probability density/(t)dt is only apparent because the expresgi®) for ¢(t)dt does not
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()

{b)

FIG. 2. (a) The dependence of the average relaxation funati¢t)) on the dimensionless tim@t for nonintermittent
fluctuations corresponding to a static procéaé line), to a dynamical process with exponential attenuataashed ling
and to a dynamical process with self-similar attenuatidash-pointej 8=0.6, wy/Q1=3, «=0.3, Qt,=0.1. (b) The
dependence of the average relaxation functigft)) on the dimensionless tim@t for intermittent fluctuations corre-
sponding to a static procegfull line), to a dynamical process with exponential attenuafidashed ling and to a
dynamical process with self-similar attenuati@ash-pointe] 8=0.6, wy/Q2=3, Qt;,=0.1, andH=0.5.

take into account the contribution of systerfmarticles which survive up to infinity. These
particles give rise to a contribution to the expression/fgndt having the form of a delta function
displaced to infinity. Equatiof6.7) should be rewritten

P(t)=— (1 ()M at+(1())d(t—t*) with t* —oo. (6.30

This definition of the probability density/(t)dt leads to a normalized expression even if
(1(=))#0.

The significance of the values of the moments of the relaxation time displayed in Table Il is
clear. A stretched exponential relaxation function is relatively fast decreasing and the resulting
shape of the tail of/(t) ensures the convergence of the moments, a situation which corresponds
to static nonintermittent disorder and to dynamical nonintermittent disorder with self-similar re-
gression. In the other four cases presented in Table Il the moments are divergent. There are two
different causes for this divergence. For nonintermittent and intermittent dynamical disorder with
exponential regression it is due to the existence of a finite proportion of particles which never
relax. For intermittent static disorder and for intermittent dynamical disorder with self-similar
regression the infinite moments are generated by the self-similar features of the tails of the
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FIG. 3. The average relaxation functi¢k(t)) for nonintermittent, self-similar fluctuatior{ull line) in comparison to the
static average relaxation functigdashed ling In the logarithmic coordinates used the stretched exponential portions of
the relaxation functions appear as straight lin@s0.6, 0*=Q/(1+ af)=1s"1, andQ*t,=0.1 for=0.1, 1, 10, 100, 1000
(from bottom to top.

probability densityy(t)dt. By using Eq.(6.28 and the data displayed in Tables | and Il it is easy
to see that in both of these cases the large time behavior of the probability density of the relaxation
time is described by

P(t)~t~ A g5t o0, (6.31)

that is, ¥(t) has a power law tail with a fractal exponent BH. It is interesting that this fractal
exponent is independent of the exponentf attenuation; the proportionality coefficient in Eq.
(6.31) is, however, generally-dependent.

For a better understanding of the behavior of the average relaxation fudtfidh in the
different cases investigated in this paper we present some graphs of this function. As expected
these graphs are consistent with the results of asymptotic analysis presented in Tables | and Il. By
examining Fig. 18 corresponding to nonintermittent dynamical fluctuations with exponential
regression we notice that the fraction of particles which never relax increases with the increase of
the frequency of regressiof,, a result which is consistent with the asymptotic expression of

\ T log(Q2*¢)

-4 -2 2

FIG. 4. The dependence of the differen¢ét)) —(l(t)) between the relaxation function for dynamical nonintermittent
fluctuations with self-similar attenuation and the relaxation function for static systems in terms of the logarithm of
dimensionless time [f2*t), 8=0.6, 0*=0/(1+aB)=1s"1, andQ*t,=0.1 for @=0.1, 1, 10(from bottom to top.
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— log(—log((£(2)}))

log(t)

FIG. 5. Average relaxation functions for nonintermittent dynamical fluctuations with exponential atter(dasbed and
self-similar attenuatiodash-pointeflin comparison with the static stretched exponential (aw line). In the logarithmic
coordinates used, the stretched exponential portions of the relaxation functions appear as straight Ureso,/Q1=3,
a=0.3, and(t,=0.1.

(I(t)) for large time corresponding to this case and presented in Table I. A similar effect can be
noticed in Fig. 1b) corresponding to nonintermittent dynamical disorder with self-similar attenu-
ation. Although in this case the decrease of efficiency of relaxation due to dynamical disorder is
less pronounced and eventuallytaso all particles relax, the graph clearly shows that an increase
of the attenuation exponentslows down the relaxation process. Figuré® 2nd Zb) show some
graphs of the average relaxation function for static disorder, dynamical disorder with exponential
and self-similar regression for nonintermittent and intermittent fluctuations, respectively. For the
consistency of comparison the parametegs «, andt, fulfill the relationship(6.5 so that for
dynamical disorder the initial frequency of regression is the same in all cases. In Fig. 2 the same
pattern is observed in both cases, that is, the exponential regression leads to incomplete relaxation
and, for relatively low values of the attenuation exponenta®0, the self-similar attenuation
leads to relaxation functions which are very close to the functions corresponding to the static case.
Significant differences occur only if the attenuation exporeid bigger than the unity.

The relative insensitivity with respect to the variations of the attenuation expenefthe
average relaxation function for dynamical disorder with self-similar regression is consistent with

; log(ft)

FIG. 6. Average relaxation functions for intermittent dynamical fluctuations with exponential atten(ddisimedl and
self-similar attenuatiofidash-pointefin comparison with the intermittent static average relaxation funcfighline). In

the logarithmic coordinates used, the power law portions of the relaxation functions appear as straigli=lihés:
wy/Q=3, a=0.3,01,=0.1, andH=0.5.
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the ubiquity in nature of the stretched exponential. The occurrence of the stretched exponential
relaxation for these types of systems is not limited to small values of the expenErmm Table

| it follows that for nonintermittent self-similar dynamical fluctuations a stretched exponential
emerges for large times for any values of the expomergmall or large. In this case the passage
from small to large times corresponds to a crossover from a stretched exponential with character-
istic frequency Q) to another stretched exponential with a smaller characteristic frequency
O =0/(1+aB)<Q. Figure 3 displays this crossover phenomenon for different values of the
exponenta from very small to very large. For this graph multiple logarithmic coordinates have
been used for which the stretched exponential portions of the average relaxation functions appear
as straight lines. Stretched exponential portions of the average relaxation functions exist both for
small and large times for any values of the exponensmall or large and all these stretched
exponentials have the same expongntWe emphasize that, even though all these stretched
exponentials have the same expongntthey may actually look very different because their
characteristic frequencies may vary very much. This fact is clearly illustrated in Fig. 4.

Figure 5 displays the departure of the different relaxation functions from a stretched expo-
nential in the nonintermittent case. Even for small values of the attenuation rates the exponential
regression leads to a large time saturation behavior which is very different from the one described
by a stretched exponential. In contrast the self-similar regression leads to a behavior close to the
one corresponding to a stretched exponential. Similarly in Fig. 6 the departure from the power law
relaxation is investigated for intermittent fluctuations. In this case, too, even for small regression
rates the exponential regression leads to incomplete relaxation whereas the self-similar attenuation
generates an average relaxation function with a long tail which is close to the one corresponding
to the static intermittent case.

The comparative analysis presented in this section shows that for the approach developed in
Sec. V the dynamical disorder decreases the efficiency of relaxation. For small regression rates the
self-similar attenuation of fluctuations leads to relaxation patterns similar to the ones correspond-
ing to the static processes. For exponential attenuation, however, even the slowest regression rate
leads to a different behavior corresponding to incomplete relaxation. For self-similar nonintermit-
tent dynamical disorder the stretched exponential relaxation behavior emerges for large times even
if the attenuation exponent is very large; the corresponding stretched exponentials, although
characterized by the same fractal expongmts in the static case, may be very different from the
static stretched exponential, because their characteristic frequencies may vary very much.

VIl. DISCUSSION

In this section we discuss some physical implications of the approach suggested in Sec. V.
The physical interpretation of the method of computing path averages based gb.Bgg5.17)
is related to an apparently obscure mathematical problem, the choice of the initial and boundary
conditions for the evolution equatioris.21) or (5.36) for the marginal average(W,t). In order
to ensure the normalization to unity of the average probability degghy)dW of an individual
relaxation rate, for solving the evolution equatit28 we have used the boundary condition
(5.31). This boundary condition expresses the generation of new fluctuations which are then
destroyed by the regression process. In contrast, for solving the partial differential evolution
equationg5.21) or (5.36) for the marginal average (W,t) no such similar boundary conditions
have been used. This omission of a boundary condition is required by the main characteristics of
the type of dynamical disorder investigated in Sec. V. The main assumption of our approach is that
the fluctuations are generated at the beginning of the relaxation process and then they regress as
the relaxation process is going on. We start out by considering an initial fluctuation with statistical
properties described by the probability densit( W)dW given by Eq.(5.25, and then we follow
its regression during the relaxation process. As time increases, due to the regression process, the
channels with high relaxation rates lose their reactivity and their rates become smaller and smaller.
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During the relaxation process the size of a set of channels with high relaxation rates is shrinking;
of the average numbeiN*) of channels involved in the process, more and more have low
relaxation rates, resulting in the decrease of efficiency described by the model. No mechanism of
transition of a channel from a state characterized by a small relaxation rate to a state with a high
relaxation rate is supposed to exist for0. Such a mechanism acts only at the beginning of the
process, fort=0, when the fluctuations are generated and thus we should impose a boundary
condition only for this moment:

F(W=W* t=0)=B/W*. (7.0

Such a condition, however, does not need to be taken explicitly into account in the computation
because it is contained in the initial conditi®37).

The above considerations are closely related to the physical interpretation &f. 28y for the
time evolution of the probability density(W)dW. From the physical point of view Ed5.28 is
a stochastic Liouville equation which describes the regression of fluctuations only and it would
lead to a probability losgo(W)dW<1 if the generation of new fluctuations is not taken into
account. The introduction of the boundary conditi®&31) compensates the “probability loss”
due to the regression process by an “influx of probability fluid” into the system. In contrast, the
compound stochastic Liouville equatidb.17), which describes the relaxation process and Eq.
(5.36 derived from it, cannot accomodate a boundary condition of the 3d). This limitation
is due to the Markovian approximation introduced in Sec. V. Within its framework a given feature
of the regression process can be modeled only by assuming that the regression freg(tipicy
generally time dependent, resulting in a time-inhomogeneous evolution equation for the overall
relaxation process for which a boundary condition of the tgg81) cannot be formulated in a
simple way.

We emphasize that this type of pure regression mechanism without generation of new fluc-
tuations fort>0 is the only one which includes the case of the static disorder as a particular case,
corresponding to the situation when the rate of regression is equal to zero. If the fluctuations are
generated fot>0, the system is characterized by dynamical disorder, even if the regression
process is missing. Although, at least in principle, this type of dynamical disorder can also be
described by the dynamical Huber 148:7) or by its intermittent analo¢4.7), it is different from
the type of dynamical disorder considered in Sec. V. Some preliminary research concerning the
generation of fluctuations far>0 is presented in Ref. 19; it has been shown that, as expected, this
type of dynamical disorder leads to an increase in the efficiency of relaxation, because it generates
an increase in the number of channels with high relaxation rates. In particular, if the regression
process is missing, this type of dynamical disorder leads to a compressed exponential relaxation
described by the average survival function

(I(t))~exp —constt!*#);  1>p>0. (7.2

Our analysis has shown that the self-similar regression has the remarkable feature that for
small regression rates it does not affect the shape of the average relaxation function, generating
only small corrections. Moreover, even for very large regression rates, for large times the process
is described by a stretched exponential with the same fractal expghastin the static case.
These results, which might provide an explanation for the universality of the stretched exponential
relaxation law, are consistent with the ideas developed by W¥stoncerning the insensitivity of
the statistical fractal systems to random perturbations. From the mathematical point of view for the
model developed in Sec. V, this insensitivity is due to the slow decrease of the relaxation rates in
the case of self-similar regression, especially for large times.

At the end of this section we point out an apparent contradiction between the results reported
here and the results presented in Ref. 26. In Ref. 26 an analysis of the passage over a fluctuating
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activation energy barrier has been suggested based on a path average technique similar to the one
used in Sec. V. Although both models assume the existence of a pure regression mechanism for
t>0, the analysis from Ref. 26 shows that the dynamical disorder leads to an increase of the

transparency factor of the barrier which apparently contradicts the results reported here. The
explanation of this apparent paradox is simple. In Ref. 26 the regression of fluctuations leads to a
decrease in the height of the activation energy barrier, that is, to an increase of the speed of
relaxation, whereas for our model the regression of fluctuations leads to small rates.

VIIl. CONCLUSIONS

In this paper an attempt has been made to construct dynamical analogs of the stretched
exponential relaxation. The main idea of the suggested approach is to search for the asymptotic
relaxation laws which emerge in the limit of a very large number of relaxation modes. The
mathematical structure of the theory is based on a formal functional generalization of the theory of
random point processes for which to each random point a random function is attached. In the limit
of very large numbers of relaxation modes two universal relaxation laws have been identified
corresponding to nonintermittent and intermittent dynamical fluctuations, respectively. An attempt
to evaluate the path averages entering the asymptotic relaxation laws has been made for Markov-
ian systems with pure regression. It has been shown that the regression of fluctuations leads to a
decrease of the efficiency of the relaxation process. For nonintermittent fluctuations the process is
relatively insensitive to the effect of self-similar attenuation of fluctuations, even for high regres-
sion rates. This effect might provide an explanation for the wide applicability of stretched expo-
nential law for describing various relaxation processes with dynamical disorder.

Further research should focus on the evaluation of the path averages for the more general case
when there is a competition between the generation and the extinction of fluctuations and on the
study of suitable applications. Ideal candidates for the application of the theory are the systems in
which a large number of degrees of freedom are involved in the relaxation process, for instance,
the protein—ligand interactiorsor the ion channel kineticswhere the relaxation modes corre-
spond to a large number of molecular conformations.
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