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The asymptotic behavior of multichannel parallel relaxation processes for systems
with dynamical disorder is investigated in the limit of a very large number of
channels. An individual channel is characterized by a state vectorx which, due to
dynamical disorder, is a random function of time. A limit of the thermodynamic
type in thex-space is introduced for which both the volume available and the
average number of channels tend to infinity, but the average volume density of
channels remains constant. Scaling arguments combined with a stochastic renor-
malization group approach lead to the identification of two different types of uni-
versal behavior of the relaxation function corresponding to nonintermittent and
intermittent fluctuations, respectively. For nonintermittent fluctuations a dynamical
generalization of the static Huber’s relaxation equation is derived which depends
only on the average functional density of channels,r[W(t8)]D[W(t8)], the chan-
nels being classified according to their different relaxation ratesW5W(t8), which
are random functions of time. For intermittent fluctuations a more complicated
relaxation equation is derived which, in addition to the average density of channels,
r[W(t8)]D[W(t8)], depends also on a positive fractal exponentH which charac-
terizes the fluctuations of the density of channels. The general theory is applied for
constructing dynamical analogs of the stretched exponential relaxation function.
For nonintermittent fluctuations the type of relaxation is determined by the regres-
sion dynamics of the fluctuations of the relaxation rate. If the regression process is
fast and described by an exponential attenuation function, then after an initial
stretched exponential behavior the relaxation process slows down and it is not fully
completed even in the limit of very large times. For self-similar regression obeying
a negative power law, the relaxation process is less sensitive to the influence of
dynamical disorder. Both for small and large times the relaxation process is de-
scribed by stretched exponentials with the same fractal exponent as for systems
with static disorder. For large times the efficiency of the relaxation process is also
slowed down by fluctuations. Similar patterns are found for intermittent fluctua-
tions with the difference that for very large times and a slow regression process a
crossover from a stretched exponential to a self-similar algebraic relaxation func-
tion occurs. Some implications of the results for the study of relaxation processes in
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I. INTRODUCTION

In the last two decades an enormous amount of experimental evidence has been accumulated
showing that the decay of the average survival~relaxation! function ^l ~t!& in many diverse
systems in condensed matter physics and in molecular biology follows the same stretched expo-
nential law of the Kohlrausch–Williams–Watts~KWW! type

^ l ~ t !&5exp@2~Vt !b#, 1.b.0, ~1.1!

whereb is a positive fractal exponent between zero and unity andV is a characteristic frequency.
Equation~1.1! was first proposed by Kohlrausch1 in 1864 to describe the mechanical creep and
was later used by Williams and Watts2 to describe the dielectric relaxation in polymers and by
Weibull3 for describing the failure data in reliability theory. More recently the KWW law has been
used to fit the data on remanent magnetization in spin glasses,4 the decay of luminiscence in
porous glasses,5 the relaxation processes in viscoelasticity6 on the reaction kinetics of
biopolimers,7 and on the dynamics of recombination kinetics in radiochemistry.8 Further applica-
tions include the description of the statistical distributions of open and closed times of ion chan-
nels in molecular biophysics9 or even the description of the survival functions of cancer patients.10

The ubiquity of the stretched exponential law~1.1! has led to the idea that there should be a
kind of universal mechanism generating it which is independent of the details of an individual
process. An argument in favor of this opinion is the close connection between the KWW law~1.1!
and the stable probability densities of the Le´vy type1,11which emerge as a result of the occurrence
of a large number of independent random events described by individual probability densities with
infinite moments. Many attempts of searching for such a universal mechanism for the occurrence
of the stretched exponential have been presented in the literature. A first attempt is a generalization
of a mechanism of parallel relaxation initially suggested by Fo¨rster for the extinction of
luminescence12 and improved by other authors.13 A second model assumes a complex serial
relaxation on a multilevel abstract structure which emphasizes the role of hierarchically con-
strained dynamics.14 A third model is a generalization of the defect-diffusion model of Shlesinger
and Montroll.15 All three of these models have been carefully examined by Klafter and
Shlesinger;16 they have shown that in spite of the different details of the three models a universal
common feature exists which is the existence of a broad spectrum of relaxation rates described by
a scale-invariant distribution. A complementary approach of the universal features of the stretched
exponential which is mathematically oriented is based on the powerful technique of fractional
calculus and its connections with the theory of Fox functions.17

An interesting approach has been suggested by Huber;18 based on a careful examination of the
models used for the description of the extinction of luminescence he has derived a general relax-
ation function

^ l ~ t !&5expH 2E
0

`

r~W!@12exp~2Wt!#dWJ , ~1.2!

wherer(W)dW is the number of channels involved in the relaxation process and characterized by
an individual relaxation rate betweenW andW1dW. If the distribution of rates is self-similar and
obeys a scaling law of the negative power law type

r~W!dW;constW2~11b! dW, ~1.3!
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which is consistent with the general ideas of self-similarity suggested by Klafter and Shlesinger,16

then Huber’s equation~1.2! leads to the stretched exponential law~1.1!. The proportionality
constant in Eq.~1.3! can be easily determined in terms of the fractal exponentb and of the
characteristic frequencyV entering Eq.~1.1!, resulting in

r~W!dW5@G~12b!#21bVbW2~11b! dW, ~1.38!

whereG(x)5*0
`tx21 exp(2t)dt, x.0, is the complete gamma function. Although Huber has

suggested that his equation might be generally valid for any disordered system with static disorder,
the validity range of his derivation, based on the approximation of a product by an exponential,
cannot be easily evaluated.

Recently two of the authors of the present paper have shown that Huber’s equation~1.2! is
exact for a Poissonian distribution of independent channels.19 Moreover, it has been recently
shown that Huber’s equation~1.2! also holds beyond the validity range of the Poissonian distri-
bution: it emerges as a universal scaling law for a uniform random distribution of a large number
of channels characterized by nonintermittent fluctuations.20 This result is consistent with the
general idea that the Huber’s equation~1.2! and the stretched exponential relaxation law~1.1!
derived from it can be generated by a central limit behavior of the Le´vy type which expresses the
contribution of a very large number of weakly connected relaxation channels. The analysis pre-
sented in Ref. 20 also shows that Huber’s equation~1.2! is not the unique universal law which
emerges in the limit of a very large number of weakly coupled channels. For intermittent fluctua-
tions of the number of channels at least one supplementary scaling law exists, which is given by

^l ~ t !&5JHF E
0

`

r~W!@12exp~2Wt!#dWG , ~1.4!

where the function

JH~z!5H@~111/H !z#2Hg„H,~111/H !z… ~1.5!

depends on the incomplete gamma functiong(x,u)5*0
utx21 exp(2t)dt, x.0, u>0, andH is a

positive fractal exponent which characterizes the fluctuations of the number of channels. The
reciprocal value of the fractal exponent, 1/H, is a measure of the intermittency of fluctuations. In
particular in the limit

1/H→0 ~H→`!, ~1.6!

the fluctuations are nonintermittent, the functionJH(z) becomes an exponential

lim
H→`

JH~z!5exp~2z!, ~1.7!

and the scaling law~1.4! reduces to the Huber’s scaling equation~1.1!. The derivation of the
intermittent scaling law~1.4! is based on the searching for a fixed point by means of a stochastic
renormalization group approach technique.21 Unfortunately the renormalization group technique
used in Ref. 20 does not guarantee that the fixed point corresponding to Eq.~1.4! is unique, and
thus other intermittent limit scaling laws corresponding to other fixed points may also exist.

By assuming that the distribution of relaxation rates is given by the scale-invariant law~1.38!,
the intermittent generalization~1.4! of the Huber’s equation leads to the relaxation law

^l ~ t !&5H~Vt !2bH~111/H !2Hg„H,~Vt !b~111/H !…, ~1.8!

which for small times reduces to a stretched exponential
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^l ~ t !&;exp@2~Vt !b#, t!V21, ~1.9!

and for large times it is given by a negative power law

^l ~ t !&;G~11H !~Vt !2bH~111/H !2H, t@V21, H5finite. ~1.10!

As the fractal exponentH increases, the intermittent nature of fluctuations becomes less and less
pronounced, the stretched exponential portion of the relaxation function^l ~t!& given by Eq.~1.8!
becomes longer and longer and the power law tail becomes shorter and shorter; eventually in the
limit H→`, corresponding to nonintermittent fluctuations, the whole relaxation function^l ~t!&
can be represented by a stretched exponential.

All these attempts at coming up with a general derivation of the stretched exponential are
based on the assumption that the disordered distribution of channels is static, i.e., that an initial
fluctuation of the number of channels characterized by different relaxation rates is frozen forever;
during the process of relaxation the distribution of channels remains invariant and described by the
static density functionr(W) dW. A channel initially characterized by a relaxation rateW is
supposed to be characterized by the same rateW at any time in the future. Although reasonable for
some problems of condensed matter physics, the validity of this assumption is questionable in
molecular biology. In the case of protein–ligand interactions7 and of ion channel kinetics9 the
distribution of relaxation channels with different rates is due to the conformational fluctuations of
protein molecules which have a dynamical nature and thus the fluctuations of the numbers of
channels characterized by different relaxation rates are continuously generated and destroyed by
thermal agitation.

The study of rate or relaxation processes with dynamical disorder is an active field of applied
statistical physics.22–26Although at times the possible connection between the stretched exponen-
tial relaxation and the dynamical disorder has also been considered,27 little attention has been paid
to the derivation of dynamic generalizations of the stretched exponential law which emerge in the
limit of a very large number of reaction channels. The purpose of this paper is the searching for
such universal scaling laws which are dynamical analogs of the general static limit laws~1.2! and
~1.4!. The starting point of our approach is the theory developed in Refs. 19 and 20 in which a
general approach of rate processes with dynamical disorder has been suggested on the basis of the
theory of random point processes.28 In Ref. 19 in the particular case of Poissonian channels a
dynamical generalization of the Huber’s equation~1.2! has been suggested

^l ~ t !&5expH 2E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J , ~1.11!

where, due to dynamical disorder, the relaxation rate corresponding to an individual channel is a
random function of timeW5W(t8), t>t8>0, r[W(t8)]D[W(t8)] is an average functional den-
sity of channels characterized by different random functionsW5W(t8), D[W(t8)] is a suitable
integration measure over the space of functionsW(t8), and** stands for the operation of path
integration. In the following we shall try to derive the dynamic analog~1.11! of Huber’s law as a
universal limit expression which emerges in the limit of a very large number of weakly interacting
channels. We shall also try to derive a universal dynamical intermittent law which is the analog of
the static scaling law~1.4!:

^l ~ t !&5JHH E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J . ~1.12!

Another objective of the article is the application of the universal laws~1.11! and ~1.12! to the
particular case of a self-similar dynamical distribution of channels which is the analog of the static
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equation ~1.38!. Carrying out this program would lead to dynamical generalizations of the
stretched exponential law~1.1! and of its intermittent generalization~1.8!.

The structure of the paper is as follows. In Sec. II we give a general formulation of the
problem in terms of a functional generalization of the theory of random point processes. In Secs.
III and IV the approach developed in Sec. II is used for the derivation of the relaxation functions
~1.11! and~1.12! as universal limit laws for nonintermittent and intermittent fluctuations, respec-
tively, valid for a very large number of weakly interacting relaxation channels. In Sec. V explicit
dynamical generalizations of the stretched exponential law are derived by computing the path
averages in Eqs.~1.11! and ~1.12! in the particular case of a stationary self-similar dynamical
distribution of relaxation channels. In Sec. VI a comparative numerical analysis of the relaxation
equations for static and dynamical disorder is presented. Finally in Secs. VII and VIII some
possibilities of application of our approach are analyzed and some open questions are pointed out.

II. FORMULATION OF THE PROBLEM

We consider a relaxation process in which a random~usually very large! number of relaxation
modes are involved. By following the usual nomenclature in nuclear physics and molecular dy-
namics we shall call these modes relaxation channels. The relaxation channels are abstract entities
which are characterized by different state vectorsx1(t8), x2(t8),..., t>t8>0, which, due to dy-
namical disorder, are random functions of time. The relaxation channels should not be mistaken
for the actual ion channels crossing a cell membrane,9 which are concrete objects.

The stochastic properties of the state vectorsx1(t8),..,xN~t8! attached to the different indi-
vidual relaxation channels can be described by a functional generalization of random point pro-
cesses. A slightly different type of functional random point process has been suggested in Ref. 19.
For describing the dynamics of the relaxation channels we introduce a set of grand canonical
Janossy probability density functionals

Q0 ,QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#, ~2.1!

with the normalization condition

Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#51. ~2.2!

HereQN@x1~t8!,...,xN~t8!#D@x1~t8!#•••D@xN(t8)# is the probability that there areN relaxation chan-
nels and that theseN channels are characterized by state vectors close tox1~t8!,...,xN~t8! and
D@x~t8!# is a suitable integration measure over the space of functionsx~t8!. This type of descrip-
tion is based on the implicit assumption that for a given realization of the process the total number
N of channels is a random quantity which does not change in time. The initial numberN of
channels is randomly chosen and then kept constant and only the random vectorsx1~t8!,...,xN~t8!
are variable in time. An alternative description of the stochastic properties of the relaxation
channels is given in terms of the generating functional

L†f @x~ t8!#‡5Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#

3D@x1~ t8!#•••D@xN~ t8!# f @x1~ t8!#••• f @xN~ t8!#, ~2.3!

wheref @x~t8!# is a suitable test functional. The main advantage of using the generating functional
L†f @x~t8!#‡ is that it can be written in a form independent of the integration measureD@x~t8!#,
which is generally unknown.
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Considering a time interval of lengtht we assume that for each channelu51,...,N, there is a
fluctuating probability of decaypu(t). This probability depends on the whole previous history of
the channel, that is,pu(t) is a functional of all previous valuesxu(t8), t>t8>0 of the state vector:

pu~ t !5p@xu~ t8!;t#. ~2.4!

A realization of the survival~relaxation! function l (t), that is, the probability that the relax-
ation process has not occured in a time interval of lengtht, is simply given by the product of the
complementary probabilities 12p@xu(t8);t# attached to all channels, which expresses the prob-
ability that none of theN channels has led to relaxation:

l ~ t !5 )
u51

N

$12p@xu~ t8!;t !#%. ~2.5!

The average relaxation function^l (t)& can be computed by evaluating the average of the fluctu-
ating functionl (t) in terms of the grand canonical Janossy probability density functionals~2.1!,
which describe the random evolution of the channels:

^l ~ t !&5Q01 (
N51

`
1

N! E E •••E E QN@x1~ t8!,...,xN~ t8!#D@x1~ t8!#•••D@xN~ t8!#

3 f @x1~ t8!#••• f @xN~ t8!# )
u51

N

$12p@xu~ t8!;t#%

5L@ f @x~ t8!#512p@x~ t8!;t##, ~2.6!

where we have used the definition~2.3! of the generating functionalL†f @x~t8!#‡. It follows that the
evaluation of the average relaxation function^l (t)& reduces to the computation of the generating
functional L†f @x~t8!#‡, which describes the random couplings between the different relaxation
channels, and to the computation of the probabilityp@x(t8);t#, which describes the individual
behavior of a single channel.

For relating the generating functional,L†f @x~t8!#‡, to the fluctuation dynamics of the number
of channels we introduce the fluctuating functional density of channels

h@x~ t8!#D@x~ t8!# with N5E E h@x~ t8!#D@x~ t8!#, ~2.7!

characterized by a random vector nearx~t8! and the corresponding characteristic functional

G†K@x~ t8!#‡5K expS i E E K@x~ t8!#h@x~ t8!#D@x~ t8!# D L , ~2.8!

whereK@x~t8!# is a suitable test functional. The fluctuations of the functional density of channels
h@x~t8!#D@x~t8!# are described in terms of the corresponding cumulants

Š^h@x1~ t8!#•••h@xm~ t8!#&‹, m51,2,..., ~2.9!

which are assumed to exist and be finite. The characteristic functionalG†K@x~t8!#‡ can be ex-
pressed in terms ofŠ^h@x1~t8!#•••h@xm(t8)#&‹, m51,2,..., by means of the cumulant expansion
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ln G†K@x~ t8!#‡5 (
m51

`
i m

m! E E •••E E Š^h@x1~ t8!#•••h@xm~ t8!#&‹K@x1~ t8!#

3D@x1~ t8!#•••K@xm~ t8!#D@xm~ t8!#. ~2.10!

For establishing a connection between the generating functionalL†f @x~t8!#‡ of the functional
point process and the characteristic functionalG†K@x~t8!#‡ of the functional density of channels
h@x~t8!#D@x~t8!#, we write a realization of the density of channelsh@x~t8!#D@x~t8!# as a sum of
functional Dirac’s delta symbols

h@x~ t8!#D@x~ t8!#5 (
u51

N

d@xu~ t8!2x~ t8!#D@x~ t8!#. ~2.11!

Equation ~2.11! is a functional generalization of the well-known relationship from statistical
mechanics expressing the particle density fields as sums of delta functions.29 We insert Eq.~2.11!
into the definition~2.8! of the characteristic functionalG†K@x~t8!#‡, and compute the average in
terms of the grand canonical Janossy probability density functionals~2.1!. By using the definition
~2.3! of the generating functionalL†f @x~t8!#‡ after getting rid of the functional integral in the
exponent due to the filtration property of the Dirac’s functional symbol and computing the result-
ing sum, we obtain

G†K@x~ t8!#‡5L†f @x~ t8!#5exp~ iK @x~ t8!# !‡. ~2.12!

It follows that the average relaxation function^l (t)& can be expressed as

^l ~ t !&5G†K@x~ t8!#5 ib@x~ t8!;t#‡, ~2.13!

where

b@x~ t8!;t#52 ln~12p@x~ t8!;t# !, ~2.14!

is the bit number30 of the individual probability of nonrelaxation 12p@x(t8);t# attached to an
individual channel with a history characterized by the functionx~t8!, t>t8>0. Equation~2.13! is
a dynamical generalization of a similar relationship derived in Ref. 20 for systems with static
disorder by using a different method that does not make use of the theory of random point
processes.

For deriving an expression for the probability of decayp@x(t8);t# attached to an individual
channel we generalize an assumption made for systems with static disorder by Huber18 and by
Vlad, Schönfisch, and Mackey.20 We assume that a channel characterized by a state vectorx can
be either in an open state with a probabilityl~x! or in a closed state with a probability 12l~x!.
Following Ref. 20 we suppose that the state vectorx of a channel belongs to a certain domainS
of the state space which is simply connected and has the volume

VS5E
S
dx, ~2.15!

and that the probabilityl~x! that the channel is open is simply given by

l~x!5V* ~x!/VS , ~2.16!

whereV* ~x! is a characteristic volume of a neighborhood of the positionx.
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We assume that an open channel characterized by a state vectorx has a rate of relaxationW~x!
that depends only on the state vectorx. Since the state vectorx is a random function of time, the
contribution of an open state to the individual probability of survival~nonrelaxation! 12p@x(t8);t#
is given by

b @W„x~ t8!…#5expS 2E
0

t

W„x~ t8!…dt8D . ~2.17!

The corresponding contribution for a closed state is simply equal tob @W„x~t8!…#51 and the
individual probability of survival 12p@x(t8);t# is given by the average of theb @W„x~t8!…#-factor
corresponding to the two states

12p@x~ t8!;t#5l„x~ t !…expS 2E
0

t

W„x~ t8!…dt8D 112l„x~ t !…, ~2.18!

from which we obtain the following expression for the individual probability of decay

p@x~ t8!;t#5
V* „x~ t !…

VS
H 12expF2E

0

t

W„x~ t8!…dt8G J . ~2.19!

Now the average survival function̂l (t)& is completely characterized by the collective sto-
chastic properties of the fluctuations of the numbers of channels, expressed by the cumulants
Š^h@x1~t8!#•••h@xm(t8)#&‹ given by Eqs.~2.9! or by the cumulant expansion~2.10! of the charac-
teristic functionalG†K@x~t8!#‡ and by the behavior of an individual channel, characterized by the
probability of decay given by Eq.~2.19!. For investigating the scaling behavior emerging in the
limit of a very large average number^N& of channels

^N&5E E Š^h@x~ t8!#&‹D@x~ t8!#→`, ~2.20!

we introduce a limit of the thermodynamic type for which both the total volumeVS available in
thex-space and the average total number^N& of channels tend to infinity, but the average density
of channels,

«5^N&/VS , ~2.21!

remains constant

VS , ^N&→` with «5^N&/VS5const. ~2.22!

For evaluating the different types of asymptotic behavior emerging in the limit~2.22! we assume
that the channels are weakly interacting, that is, as the total space volume increases to infinity,
VS→`, the characteristic volumesV* ~x1!, V* ~x2!,..., of the neighborhoods of the different chan-
nels remain finite and constant; in other words, the increase of the total space volumeVS does not
lead to an increase of the possible overlapping among the neighborhoods attached to the different
channels. This assumption of locality generates the two types of asymptotic behavior investigated
in Secs. III and IV.
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III. LIMIT BEHAVIOR FOR NONINTERMITTENT FLUCTUATIONS

We introduce the relative fluctuations of different orders:

cm@x1~ t8!,...,xm~ t8!#5
Š^h@x1~ t8!#•••h@xm~ t8!#&‹

Pu51
m $Š^h@xu~ t8!#&‹%

, m>2. ~3.1!

If the relative fluctuationscm@x1~t8!,....,xm(t8)#,m>2, decrease to zero in the thermodynamic limit
~2.22!

cm@x1~ t8!,...,xm~ t8!#→0, VS ,^N&→`, with «5const,m52,3,..., ~3.2!

then the fluctuations of the numbers of channels are nonintermittent. For investigating the asymp-
totic behavior of the survival function̂l (t)& for nonintermittent fluctuations in the thermody-
namic limit ~2.22! we introduce the average probability density functional of the state vectorx~t8!
of an individual channel,

j@x~ t8!#D@x~ t8!#5
Š^h@x~ t8!#&‹D@x~ t8!#

**Š^h@x~ t8!#&‹D@x~ t8!#
, ~3.3!

with

E E j@x~ t8!#D@x~ t8!#51, ~3.4!

and combine Eqs.~2.10!, ~2.13!, ~2.14!, ~2.19!, ~2.20!, and~3.1!. We express the cumulants of the
functional density of channels in terms of the relative fluctuationsc1@x1~t8!,...,xm(t8)# and of the
average probability density functionalj@x~t8!#D@x~t8!#. By inserting the resulting expression for
the cumulants into the functional Taylor expansion~2.10! for the logarithm of the characteristic
functionalG†K@x~t8!#‡ and expressing the average relaxation function^l (t)& from Eqs.~2.13!,
~2.14!, and~2.19! we obtain

^l ~ t !&5expH (
m51

`
«m

m! E E •••E E cm@x1~ t8!,...,xm~ t8!#j@x1~ t8!#D@x1~ t8!#...j@xm~ t8!#

3D@xm~ t8!# )
u51

m HVSlnH 12
V* „xu~ t !…

VS
F12expS 2E

0

t

W„xu~ t8!…dt8D G J J J , ~3.5!

where

c151. ~3.6!

From Eqs.~2.22!, ~3.2!, ~3.5!, and ~3.6! it follows that for nonintermittent fluctuations in the
thermodynamic limit in Eq.~3.5! only the term corresponding tom51 survives and the expression
for the average survival function̂l (t)& reduces to the dynamical generalization~1.11! of Huber’s
equation:

^l ~ t !&;expH 2E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J asVS ,^N&→`,«5const,

~3.7!

where
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r@W~ t8!#D@W~ t8!#5H «E E V* „x~ t !…j@x~ t8!#D@x~ t8!#d@W~ t8!2W„x~ t8!…#JD@W~ t8!#

~3.8!

is the average density of channels involved in the relaxation process, the channels being classified
according to their relaxation ratesW(t8), t>t8>0.

IV. LIMIT BEHAVIOR FOR INTERMITTENT FLUCTUATIONS

For the study of the asymptotic scaling behavior of the average survival function for inter-
mittent fluctuations a renormalization group technique should be used. In the following we apply
a probabilistic version21 of the Shlesinger–Hughes stochastic renormalization procedure31 which
has been recently applied to the study of space-dependent epidemic processes with high
migration.32 The method consists of starting out from an initial characteristic functional
G†K@x~t8!#‡ of the functional density of states for which the fluctuations are nonintermittent and
constructing, by means of a succession of decimation processes, a renormalized characteristic
functionalG̃†K@x~t8!#‡ for which the fluctuations of the density of states are intermittent. The main
steps of such an approach are presented in another context in Ref. 21 and a simplified derivation
is also presented in Ref. 32. Here we give only the final expression for the renormalized charac-
teristic functionalG̃†K@x~t8!#‡:

G̃†K@x~ t8!#‡5HE
0

1

zH21G†2 i ln@12z†12exp„iK @x~ t8!#…‡#‡ dz;H.0, ~4.1!

whereH is a positive fractal exponent similar to the one entering the static equations~1.4!–~1.10!.
For evaluating the limit scaling law for the average relaxation function^l (t)& corresponding

to the renormalized expression~4.1! we expand in Eq.~4.1! the nonrenormalized characteristic
functionalG†K@x~t8!#‡ in the cumulant expansion~2.10! and express the corresponding cumulants
in terms of the nonrenormalized relative fluctuationscm@x1~t8!;...;xm(t8)# and in terms of the
average renormalized density of channels

«5
^Ñ&
VS

5
H

H11
•

^N&
VS

. ~4.2!

Here we have used the relationship between the nonrenormalized average number of channels^N&
and the corresponding renormalized average^Ñ&:

^Ñ&5^N&H/~H11!. ~4.3!

The relationship~4.3! can be derived from the renormalization group equation~4.1! by means of
functional differentiation followed by the application of the relationships

^N&5E E Š^h@x~ t8!#&‹D@x~ t8!#5E E d ln G@K50#

dK@x~ t8!#
D@x~ t8!#, ~4.4!

^Ñ&5E E ^^h̃@x~ t8!#&&D@x~ t8!#5E E d ln G̃@K50#

dK@x~ t8!#
D@x~ t8!#, ~4.5!

which can be derived by expanding the characteristic functionalsG†K@x~t8!#‡ andG̃†K@x~t8!#‡ in
cumulant series of the type~2.10!.
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By using Eqs.~2.10!, ~2.13!, and~2.14! applied for the renormalized characteristic functional
G̃†K@x~t8!#‡ combined with Eqs.~4.1! and~4.2! and using the same steps as in Sec. III we obtain
the following expression for the average relaxation function^l (t)&:

^l ~ t !&5HE
0

1

zH21 dz expH (
m51

`
1

m! F«S 11
1

H D GmE E •••E E cm@x1~ t8!,...,xm~ t8!#j@x1~ t8!#

3D@x1~ t8!#•••j@xm~ t8!#D@xm~ t8!# )
u51

m HVS lnF12zV* „xu~ t !…~VS!21

3S 12expS 2E
0

t

W„xu~ t8!…dt8D D G J J , ~4.6!

from which, by taking into account the nonintermittency conditions~3.2! for the nonrenormalized
relative fluctuations of the density of channels we obtain the following scaling law in the thermo-
dynamic limit ~2.22!:

^l ~ t !&;JHH E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G J ,
as VS ,^Ñ&→` with «5^Ñ&/VS5const, ~4.7!

where the functionJH(z) and the functional density of channels involved in the relaxation
process,r[W(t8)]D[W(t8)], are given by Eqs.~1.5! and ~3.8!, respectively.

Equation~4.7! justifies the conjecture~1.12! made without proof in Sec. I. This equation is the
dynamical analog of the intermittent scaling law~1.4! derived for systems with static disorder in
Ref. 20. Just like in the static case the reciprocal value of the fractal exponentH, 1/H, is a measure
of the degree of intermittency of the fluctuations of the number of channels. In particular in the
limit H→` the fluctuations become nonintermittent and Eq.~4.7! reduces to the dynamical ana-
logue~1.2! of Huber’s equation. The renormalization group approach for dynamical disorder used
in this paper has the same drawback as the similar static approach developed in Ref. 20: it does not
guarantee that the limit scaling relationship~4.7! is the unique asymptotic law which emerges in
the thermodynamic limit for intermittent fluctuations. The renormalization group procedure intro-
duced in Ref. 21 does not provide a hint that the fixed point corresponding to Eq.~4.1! is the
unique fixed point of the problem. It is possible that further research may lead to other scaling
laws characteristic for intermittent fluctuations.

V. DYNAMICAL GENERALIZATIONS OF STRETCHED EXPONENTIAL

The main difficulty related to the application of the dynamical scaling laws~3.7! and~4.7! is
connected to the evaluation of the path integral:

I ~ t !5E E r@W~ t8!#D@W~ t8!#F12expS 2E
0

t

W~ t8!dt8D G . ~5.1!

The evaluation of such path integrals would be trivial provided that the functional density of states
r[W(t8)]D[W(t8)] would have a Gaussian behavior. Unfortunately a Gaussian form for
r[W(t8)]D[ t8)] must be ruled out because it does not include the static power law distribution
~1.38! as a particular case.

A formal solution of the problem can be given by introducing an average probability density
functional of the relaxation ratesW(t8), t>t8>0:
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w@W~ t8!#D@W~ t8!#5r@W~ t8!#D@W~ t8!#/^N* &, ~5.2!

with the normalization condition

E E w@W~ t8!#D@W~ t8!#51, ~5.3!

and where

^N* &5E E r@W~ t8!#D@W~ t8!#5«E E V* „x~ t !…j@x~ t8!#D@x~ t8!# ~5.4!

is the average effective number of channels involved in the relaxation process. Generally the
average effective number of channels involved in relaxation,^N* &, is at most equal to the total
average number of channels,^N&. By using the expression~5.2! for the average probability density
functionalw[W(t8)]D[W(t8)], the factorI (t) can be expressed in terms of a dynamical average
of the random function

b @W~ t8!#5expS 2E
0

t

W~ t8!dt8D ~5.5!

@see also Eq.~2.17!#. We have

I ~ t !5^N* &$12^b @W~ t8!#&%, ~5.6!

where the dynamical average^b [W(t8)] & is given by

^b @W~ t8!#&5E E w@W~ t8!#D@W~ t8!#b @W~ t8!#. ~5.7!

In this paper we limit ourselves to the simplest case of dynamical disorder for which the random
process corresponding to the average probability density functionalw[W(t8)]D[W(t8)] is Mar-
kovian. Moreover we consider that the average effective number of channels involved in the
relaxation process,̂N* &, is time independent:

^N* &5const. ~5.8!

Under these circumstances the probability density functionalw[W(t8)]D[W(t8)] can be repre-
sented as

w@W~ t8!#D@W~ t8!#5 lim
m→`

~Dt→0!

@w„Wm ;mDtuWm21 ;~m21!Dt…dWm•••w~W2 ;2DtuW1 ;Dt !dW2

3w~W1 ;DtuW0 ;0!dW1wst~W0!dW0#, t>t8>0, ~5.9!

where

m5t/Dt; ~5.10!

wst~W!dW with E wst~W!dW51, ~5.11!

2290 Vlad et al.: Universal behavior for dynamical disorder

J. Math. Phys., Vol. 37, No. 5, May 1996

Downloaded¬18¬Nov¬2000¬¬to¬18.19.0.171.¬¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jmp/jmpcpyrts.html.



is an average one-time stationary probability density of an individual relaxation rate attached to a
given channel corresponding to static disorder and

w~W;tuW8;t8!dW with E w~W;tuW8;t8!dW51 ~5.12!

is the average conditional probability density of the relaxation rateW at time t provided that at
time t8 the relaxation rate wasW8. For a Markov process bothwst(W) andw(W;tuW8;t8) are the
solutions of an evolution equation of the type

] tw5Lw, ~5.13!

whereL is a linear Markovian evolution operator of the Liouville, Fokker–Planck, or the master
type. In this case the probabilitywst(W) is the stationary solution of Eq.~5.13!, whereas the
conditional probability densityw(W;tuW8;t8) is the Green’s function of the equation~5.13! cor-
responding to the initial condition

w~W;t5t8uW8;t8!5d~W2W8!. ~5.14!

For the above-mentioned Markovian systems there is a general method for computing dy-
namical path averages of the type~5.7! without the explicit evaluation of a path integral. The
method was suggested by Lax in the sixties33 in connection with certain problems of quantum
optics and rediscovered independently by Van Kampen.34,35For a recent application of this tech-
nique to the study of a rate process with dynamical disorder, the passage over a fluctuating
activation energy barrier, see Ref. 26. The idea is based on the observation that a realization of the
function b (t)5b [W(t8)] given by Eq.~5.5! obeys a stochastic differential equation with a ran-
dom coefficient:

db ~ t !

dt
52W~ t !b ~ t ! with b ~0!51. ~5.15!

Since Eq.~5.15! is local in time and the coefficientW(t) is Markovian it follows that the pair of
random variables„W(t),b (t)… is also Markovian and the one-time joint probability density,

P~W,b ;t !dWdb with E E P~W,b ;t !dWdb51, ~5.16!

obeys a compound stochastic Liouville equation,33–35

] tP~W,b ;t !5]b $Wb P~W,b ;t !%1LP~W,b ;t !, ~5.17!

with the initial condition

P~W,b ;t50!5d~b21!wst~W!. ~5.18!

The dynamical averagêb [W(t8)] & can be expressed as an average value corresponding to the
joint probability densityP~W,b ;t!:

^b @W~ t8!#&5E E b P~W,b ;t !dWdb5E F~W,t !dW, ~5.19!

where
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F~W,t !5E b P~W,b ;t !db ~5.20!

is a marginal average. By multiplying Eqs.~5.17! and ~5.18! by b and integrating overb after a
partial integration we obtain a closed equation for the marginal averageF(W;t):

] tF~W;t !1WF~W;t !5LF~W;t !, ~5.21!

with the initial condition

F~W;t50!5wst~W!. ~5.22!

From the above considerations it turns out that for a stationary Markovian average random
process the evaluation of the average survival function^l (t)& reduces to the evaluation of the
marginal averageF(W,t) by solving the evolution equation~5.21! with the initial condition~5.22!
followed by the application of Eqs.~3.7!, ~4.7!, ~5.1!, ~5.6!, and~5.19!.

For applying the suggested Markovian approach we should come up with a suitable definition
of the Markovian evolution operatorL. The simplest possible choice would be a Liouville operator
of the type suggested in Ref. 26 determined by starting out from the stationary probability density
wst(W) corresponding to the static density of states~1.38! attached to a stretched exponential of
the type~1.1! and by assuming that the regression of the fluctuations of the relaxation rate is
described by a generally time-dependent regression ratev(t). Now we notice a minor difficulty
related to the self-similar form~1.38! of the static density of statesr(W)dW: due to the infrared
divergence ofr(W) given by Eq.~1.38! atW50, the average effective number^N* & of channels
involved in the relaxation process is infinite:

^N* &5E
0

`

r~W!dW5E
0

`

@G~12b!#21bVbW2~11b!dW5`. ~5.23!

Due to the time independence condition~5.8! for ^N* &, the divergent behavior carries over for
systems with dynamical disorder. This divergence is, however, spurious because the correspond-
ing integral expressions for the average survival function^l (t)& are well behaved. The problem
can be solved by introducing an infrared cutoffW*Þ0 and by passing to the limitW*→0 after
performing the computations.

For a cutoff valueW*Þ0, the total effective average number of channels^N* & is finite:

^N* &5E
W*

`

r~W!dW5@G~12b!#21S V

W* D b

, ~5.24!

and the stationary probability densitywst(W) dW is given by

wst~W!dW5r~W!dW/^N* &5b~W* !bW2~11b!dW, ~5.25!

which obviously fulfills the normalization condition

E
W*

`

wst~W!dW51. ~5.26!

By following the approach suggested in Ref. 26 we expresswst(W) as the normalized solution of
a Bloch-like equation

bS bwst~W!1
]

]W
@Wwst~W!# D50, ~5.27!
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and suggest a dynamical generalization of Eq.~5.27! depending on the regression frequencyv(t):

]w

]t
52bv~ t !Fbw1

]

]W
~Ww!G5Lw, ~5.28!

where the Liouville operatorL is given by

L...52bv~ t !Fb...1 ]

]W
~W...!G . ~5.29!

All solutions of the Liouville equation~5.28! should be properly defined, that is, they should be
non-negative and conserve the normalization to unity at any time

w>0;E
W*

`

w dW51. ~5.30!

By integrating Eq.~5.28! term by term it is easy to check that it conserves the normalization ofw
to unity provided that the following boundary condition is fulfilled:

w~W5W* ;t !5b/W* ; t>0. ~5.31!

Concerning the non-negativity ofw we express any solution of Eq.~5.28! in terms of the
Green’s functionw(W;tW8;t8), which is the solution of Eq.~5.28! with the initial condition
~5.14!, and of the initial conditionw(W;t50):

w~W;t !5E
W*

`

w~W;tuW8;0!w~W8;t50!dW8. ~5.32!

The Green’s functionw(W;tuW8;0) can be easily evaluated by integrating Eq.~5.28! along the
characteristics with the initial condition~5.14! applied fort850 and with the boundary condition
~5.31!, resulting in

w~W;tuW8;0!5hFW* expS bE
0

t

v~ t8!dt8D 2WG S b

W* D SW*

W D 11b

1hFW2W* expS bE
0

t

v~ t8!dt8D GexpS 2b2E
0

t

v~ t8!dt8D
3dFW2W8 expS bE

0

t

v~ t8!dt8D G , ~5.33!

whereh(x) is the Heaviside’s step function. From Eqs.~5.32! and ~5.33! we obtain

w~W;t !5hFW* expS bE
0

t

v~ t8!dt8D 2WG S b

W* D SW*

W D 11b

1hFW2W* S bE
0

t

v~ t8!dt8D G
3expS 2b2E

0

t

v~ t8!dt8DwSW expS 2bE
0

t

v~ t8!dt8D ;t50D . ~5.34!

Both Eqs. ~5.33! and ~5.34! conserve the non-negativity and normalization conditions~5.30!
provided that the initial probability densityw(W;t50) is non-negative and normalized to unity
and is equal to zero for any rate smaller than the cutoff valueW5W* :
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w~W;t50!>0; E
W*

`

w~W;t50!dW51; w~W,W* ;t50!50. ~5.35!

By applying the above-mentioned Markovian approach it follows that the marginal average
F(W,t) is the solution of the partial differential equation

] tF~W,t !1WF~W,t !52bv~ t !@bF~W,t !1]W@WF~W,t !##, ~5.36!

with the initial condition

F~W,t50!5b~W* !21~W* /W!11b. ~5.37!

By integrating Eq.~5.36! by means of the method of characteristics we can express the marginal
averageF(W,t) in terms of an arbitrary function. By determining this arbitrary function from the
initial condition ~5.37! we obtain

F~W,t !5b~W* !21SW*

W D 11b

expH 2Wgb~ t !E
0

t

g2b~ t8!dt8J , ~5.38!

whereg(t), the attenuation factor of the regression of fluctuations of the relaxation rate attached
to a given channel, is given by

dg~ t !

dt
52v~ t !g~ t !, g~0!51, ~5.39!

that is,

g~ t !5expS 2E
0

t

v~ t8!dt8D . ~5.40!

From Eqs.~5.1!, ~5.6!, ~5.19!, and~5.38! if follows that the exponentI (t) is equal to

I ~ t !5
bVb

G~12b!
E
W*

` 12exp@2Wgb~ t !*0
t g2b~ t8!dt8#

W11b dW. ~5.41!

As expected in the limitW*→0, the exponentI (t) is well behaved and in this limit the integral
overW in Eq. ~5.41! can be explicitly computed, resulting in

I ~ t !5FVgb~ t !E
0

t

g2b~ t8!dt8Gb

. ~5.42!

From the above computations it turns out that for the model considered in this section the univer-
sal scaling laws~3.7! and~4.7! for dynamical nonintermittent and intermittent fluctuations become

^l ~ t !&5expH 2FVgb~ t !E
0

t

g2b~ t8!dt8GbJ ~5.43!

and

^l ~ t !&5JHH FVgb~ t !E
0

t

g2b~ t8!dt8G J , ~5.44!

2294 Vlad et al.: Universal behavior for dynamical disorder

J. Math. Phys., Vol. 37, No. 5, May 1996

Downloaded¬18¬Nov¬2000¬¬to¬18.19.0.171.¬¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/jmp/jmpcpyrts.html.



respectively. Equations~5.43! and ~5.44! are dynamical analogs of the stretched exponential law
~1.1! and of its static intermittent generalization~1.8!. The concrete form of these two equations
depends on the dynamics of the regression of the fluctuations of the relaxation rate expressed by
the attenuation functiong(t). A comparison between the relaxation behavior corresponding to
some important types of dynamical disorder and the relaxation behavior of the similar systems
with static disorder is presented in the following section.

VI. STATIC VERSUS DYNAMICAL DISORDER

The dynamical relaxation equations~5.43! and ~5.44! include the stretched exponential~1.1!
and its static intermittent analogue~1.8! as particular cases corresponding to a regression ratev(t)
equal to zero for which there is no attenuation of the fluctuations

v~ t !50, g~ t !51, ~6.1!

and an initial fluctuation of the relaxation rate is frozen forever.
In this paper we limit ourselves to the study of only two types of dynamical disorder. The first

case corresponds to a fast regression of the fluctuations for which the frequencyv(t) is constant
and the attenuation functiong(t) is exponentially decreasing in time:

v~ t !5v05const and g~ t !5exp~2v0t !. ~6.2!

The second case corresponds to a self-similar regression process described by slowly decaying
functionsv(t) andg(t) which obey negative power laws of time ast@t0 :

v~ t !5a/~ t1t0!;a/t as t@t0 , ~6.3!

g~ t !5@ t0 /~ t1t0!#
a;~ t0 /t !

a as t@t0 , ~6.4!

where t0.0 is a possibly very small but, however, different from zero time constant which has
been introduced in order to avoid the divergence of the frequencyv(t) in the limit t→0. The
relationships between these two cases can be clarified by requiring that ast→0 the regression rates
v(t) have the same values, resulting in

v~0!5a/t05v0 . ~6.5!

By using Eq.~6.5! the relationship~6.4! for the attenuation functiong(t) becomes

g~ t !5@a/~v0t1a!#a. ~6.6!

For small values ofa the functiong(t) given by Eq.~6.6! has a long tail of the negative power law
type. As the fractal exponenta increases the tail of the attenuation functiong(t) is getting shorter
and shorter and in the limita→` we recover the exponential decay law~6.2!.

In order to outline the analogies and differences between the relaxation processes in systems
with static and dynamical disorder we compare the static relaxation equations~1.1! and ~1.8! for
nonintermittent and intermittent fluctuations, respectively, with the dynamical relaxation equations
~5.43! and ~5.44! applied in the case of the attenuation functionsg(t) given by Eqs.~6.2! and
~6.4!. It is also of interest to compare the probability densities of the relaxation time

c~ t !dt52F]^l ~ t !&
]t Gdt, ~6.7!

the corresponding moments
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^tm&5E
0

`

tmc~ t !dt5 lim
t→`

tm^l ~ t !&1mE
0

`

tm21^l ~ t !&dt, ~6.8!

and the effective rates of relaxation

Weff~ t !5c~ t !/^l ~ t !&52] t ln^l ~ t !&. ~6.9!

For computing these functions we express the average relaxation functions for nonintermittent and
intermittent fluctuations in terms of the exponentI (t) given by Eq.~5.42!:

^l ~ t !&5exp@2I ~ t !#, ~6.10!

^l ~ t !&5JH@ I ~ t !#. ~6.11!

The application of Eqs.~1.5!, ~5.42!, and~6.7!–~6.11! leads to the following relationships for the
functionsc(t) andWeff(t):

c~ t !5q~ t !I ~ t !exp@2I ~ t !#, ~6.12!

Weff~ t !5q~ t !I ~ t !, ~6.13!

for nonintermittent fluctuations and

c~ t !5q~ t !F H@ I ~ t !#JH@ I ~ t !#, ~6.14!

Weff~ t !5q~ t !F H@ I ~ t !#, ~6.15!

for intermittent fluctuations. Here the functionsq(t) andF H(z) are given by

q~ t !5
d@ ln I ~ t !#

dt
5bH g2b~ t !F E

0

t

g2b~ t8!dt8G21

2bv~ t !J , ~6.16!

F H~z!5~H11!H 11F S 11
1

H D HzHG exp@2z~111/H !#

g@H11;z~111/H !#J
21

. ~6.17!

For applying these equations for systems with nonintermittent or intermittent static disorder
and for systems with nonintermittent or intermittent dynamical disorder with exponential or self-
similar regression we should evaluate the functionsI (t) and q(t) corresponding to all these
particular cases. After some computations we come to

I ~ t !5~Vt !b, q~ t !5b/t, ~6.18!

for static disorder;

I ~ t !5H V@12exp~2v0bt !#

@v0b# J b

, ~6.19!

q~ t !5b2v0 exp~2v0bt !@12exp~2v0bt !#
21, ~6.20!

for nonintermittent and intermittent dynamical disorder with exponential attenuation; and

I ~ t !5$V* @ t1t02t0@ t0 /~ t1t0!#
ab#%b, ~6.21!

q~ t !5b2a~ t0!
21@ t0 /~ t1t0!#

ab12$12@ t0 /~ t1t0!#
ab11%21, ~6.22!
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for nonintermittent and intermittent dynamical disorder with self-similar attenuation. Here

V*5V/~11ab!. ~6.23!

By combining Eqs.~6.7!–~6.22! we can derive six sets of functions^l (t)&, c(t), andWeff(t)
corresponding to nonintermittent and intermittent static disorder, to the two types of nonintermit-
tent dynamical disorder, and to the two types of intermittent dynamical disorder considered in this
article. The resulting equations are rather complicated and to save space they are not given here.
We present only two tables with the different types of limit behavior of these functions for short
and large times, respectively.

Table 1 shows the asymptotic behavior of the average survival function^ l (t)& in the six cases
considered. For nonintermittent fluctuations the dynamical disorder decreases the efficiency of
relaxation both for exponential and self-similar attenuation. The effect is much more pronounced
for exponential attenuation for which the relaxation function tends towards a positive value dif-
ferent from zero ast→` and thus the relaxation process is never complete, not even after an
infinitely large period of time. For self-similar attenuation this decrease in efficiency is less
pronounced. An interesting effect in this case is that both for small and large times the relaxation
process is described by stretched exponentials with the same exponentb and different character-
istic frequencies,V andV*5V/~11ab!,V, respectively. For large times the decrease of effi-
ciency due to dynamical disorder is displayed by the decrease of the characteristic frequency from
V to V* . Similar patterns occur in the intermittent cases for which the dynamical disorder also
slows down the relaxation process. For exponential attenuation after an initial stretched exponen-
tial behavior for large times a self-similar region exists for which the relaxation function is
described by a negative power law of time. The self-similar region is eventually followed by a
horizontal asymptote of the relaxation function which has a positive residual value even in the
limit t→`, a situation which corresponds to incomplete relaxation. Just as in the nonintermittent

TABLE I. Limit behavior of the average relaxation function^ l (t)& for different types of static and dynamical disorder for
small and large times.

Case ^ l (t)& for small times ^ l (t)& for large times

~1! Nonintermittent
static disorder

exp@2(Vt)b# exp@2(Vt)b#

~2! Nonintermittent
dynamical disorder exp@2(Vt)b#; exp@2~V/bv0!

b#5const;
with exponential Vt!V/v0 Vt@V/v0

regression

~3! Nonintermittent
dynamical disorder exp@2(Vt)b#; exp@2(V* t)b#;
with self-similar Vt!Vt0 Vt@Vt0
regression

~4! Intermittent exp@2(Vt)b#; (Vt)2bH(111/H)2HG(11H);
static disorder Vt!1 Vt@1

~5! Intermittent ~a! (Vt)2bH(111/H)2HG(11H);
dynamical disorder exp@2(Vt)b#; V/v0@Vt@1
with exponential Vt!V/v0 ;Vt!1 ~b! (V/bv0)

2bH(111/H)2HG(11H);
regression Vt@V/v0@1

~6! Intermittent ~a! (Vt)2bH(111/H)2HG(11H);
dynamical disorder exp@2(Vt)b#; Vt0@Vt@1
with self-similar Vt!1;Vt!Vt0 ~b! (V* t)2bH(111/H)2HG(11H);
regression Vt@Vt0@1
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case for self-similar attenuation, the decrease in efficiency of the relaxation process is less pro-
nounced in comparison with the case of exponential attenuation. For small times a stretched
exponential behavior exists with a characteristic frequency

V** 5V. ~6.24!

For large times both the intermittent behavior and the regression of fluctuations lead to the slowing
down of the relaxation process. The intermittent behavior is dominant leading to a long time tail
of the average survival function.

Table II displays the asymptotic values of the effective relaxation rateWeff(t) for small and
large times as well as the values of the positive moments of the relaxation time. The expressions
for the effective relaxation rate are consistent with the data presented in Table I for the average
survival function. A survival function of the stretched exponential type corresponds to a negative
power law function of time for the effective relaxation rate of the type

Weff;1/t12b. ~6.25!

Similarly a power law tail of the survival function corresponds to an asymptotic hyperbolic time
dependence of the effective relaxation rate

Weff;1/t as t→`, ~6.26!

whereas a positive residual value of the relaxation function for large times,^l ~`!&.0, corresponds
to an asymptotic value of the effective relaxation rate equal to zero:

Weff;0 as t→`. ~6.27!

TABLE II. Limit behavior for small and large times of the effective relaxation rateWeff(t) and the values of the positive
momentŝ tm&, m>1, of the relaxation time for different types of static and dynamical disorder.

Case
Weff(t)

for small times
Weff(t)

for large times ^tm&,m>1

~1! Nonintermittent
static disorder

bVbtb21 bVbtb21 V2mG(11m/b)5finite

~2! Nonintermittent
dynamical disorder
with exponential

bVbtb21;
Vt!V/v0

;0;
Vt@V/v0

`

regression

~3! Nonintermittent
dynamical disorder
with self-similar

bVbtb21;
Vt!Vt0

b~V* !btb21;
Vt@Vt0

finite

regression

~4! Intermittent
static disorder

bVbtb21;
Vt!1

H/t;
Vt@1

`

~5! Intermittent bVbtb21; ~a! H/t;
dynmical disorder Vt!V/v0 ;Vt!1 V/v0@Vt@1 `
with exponential ~b! ;0;
regression Vt@V/v0@1

~6! Intermittent ~a! H/t;
dynamical disorder
with self-similar

bVbtb21;
Vt!1;Vt!Vt0

Vt0@Vt@1
~b! H/t;

`

regression Vt@Vt0@1
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The analysis of the values of the moments of the relaxation time,^tm&, is of interest because
their divergence may be related to the possible statistical fractal behavior of the probability density
c(t) of the relaxation time. To save space the asymptotic values ofc(t) are not given in Tables
I and II; however, the asymptotic expressions forc(t) can be easily evaluated from these tables by
noticing that from Eq.~6.9! we have

c~ t !5^ l ~ t !&Weff~ t !. ~6.28!

Special attention is deserved by the investigation of the asymptotic behavior of the probability
densityc(t)dt of the relaxation time in the case when a residual value different from zero exists
for the average survival function, a situation which corresponds to incomplete relaxation. In this
case the probability densityc(t)dt of the relaxation time is apparently not normalized to unity
because we have

E
0

`

c~ t !dt52E
0

`

] t^ l ~ t !&dt5^ l ~0!&2^ l ~`!&512^ l ~`!&,1. ~6.29!

The physical explanation of this result is the following: the factor^l ~`!& expresses the proportion
of systems~particles! which never relax. Notice, however, that the violation of normalization of
the probability densityc(t)dt is only apparent because the expression~6.7! for c(t)dt does not

FIG. 1. ~a! The dependence of the average survival function^ l (t)& on the dimensionless timeVt and on the relative
frequency of regressionv0/V for nonintermittent dynamical fluctuations with exponential attenuation,b50.6. ~b! The
dependence of the average survival function^ l (t)& on the dimensionless timeVt and on the attenuation exponenta for
nonintermittent dynamical fluctuations with self-similar regression,b50.6 andVt050.1.
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take into account the contribution of systems~particles! which survive up to infinity. These
particles give rise to a contribution to the expression forc(t)dt having the form of a delta function
displaced to infinity. Equation~6.7! should be rewritten

c~ t !52]^ l ~ t !&/]t1^ l ~`!&d~ t2t* ! with t*→`. ~6.30!

This definition of the probability densityc(t)dt leads to a normalized expression even if
^l ~`!&Þ0.

The significance of the values of the moments of the relaxation time displayed in Table II is
clear. A stretched exponential relaxation function is relatively fast decreasing and the resulting
shape of the tail ofc(t) ensures the convergence of the moments, a situation which corresponds
to static nonintermittent disorder and to dynamical nonintermittent disorder with self-similar re-
gression. In the other four cases presented in Table II the moments are divergent. There are two
different causes for this divergence. For nonintermittent and intermittent dynamical disorder with
exponential regression it is due to the existence of a finite proportion of particles which never
relax. For intermittent static disorder and for intermittent dynamical disorder with self-similar
regression the infinite moments are generated by the self-similar features of the tails of the

FIG. 2. ~a! The dependence of the average relaxation function^ l (t)& on the dimensionless timeVt for nonintermittent
fluctuations corresponding to a static process~full line!, to a dynamical process with exponential attenuation~dashed line!,
and to a dynamical process with self-similar attenuation~dash-pointed!, b50.6, v0/V53, a50.3, Vt050.1. ~b! The
dependence of the average relaxation function^ l (t)& on the dimensionless timeVt for intermittent fluctuations corre-
sponding to a static process~full line!, to a dynamical process with exponential attenuation~dashed line!, and to a
dynamical process with self-similar attenuation~dash-pointed!, b50.6,v0/V53, Vt050.1, andH50.5.
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probability densityc(t)dt. By using Eq.~6.28! and the data displayed in Tables I and II it is easy
to see that in both of these cases the large time behavior of the probability density of the relaxation
time is described by

c~ t !;t2~11bH ! as t→`, ~6.31!

that is,c(t) has a power law tail with a fractal exponent 11bH. It is interesting that this fractal
exponent is independent of the exponenta of attenuation; the proportionality coefficient in Eq.
~6.31! is, however, generallya-dependent.

For a better understanding of the behavior of the average relaxation function^ l (t)& in the
different cases investigated in this paper we present some graphs of this function. As expected
these graphs are consistent with the results of asymptotic analysis presented in Tables I and II. By
examining Fig. 1~a! corresponding to nonintermittent dynamical fluctuations with exponential
regression we notice that the fraction of particles which never relax increases with the increase of
the frequency of regressionv0, a result which is consistent with the asymptotic expression of

FIG. 3. The average relaxation function^ l (t)& for nonintermittent, self-similar fluctuations~full line! in comparison to the
static average relaxation function~dashed line!. In the logarithmic coordinates used the stretched exponential portions of
the relaxation functions appear as straight lines:b50.6,V*[V/~11ab!51s21, andV* t050.1 fora50.1, 1, 10, 100, 1000
~from bottom to top!.

FIG. 4. The dependence of the difference^ l (t)&2^l stat(t)& between the relaxation function for dynamical nonintermittent
fluctuations with self-similar attenuation and the relaxation function for static systems in terms of the logarithm of
dimensionless time ln~V* t!, b50.6,V*[V/~11ab!51s21, andV* t050.1 for a50.1, 1, 10~from bottom to top!.
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^ l (t)& for large time corresponding to this case and presented in Table I. A similar effect can be
noticed in Fig. 1~b! corresponding to nonintermittent dynamical disorder with self-similar attenu-
ation. Although in this case the decrease of efficiency of relaxation due to dynamical disorder is
less pronounced and eventually ast→` all particles relax, the graph clearly shows that an increase
of the attenuation exponenta slows down the relaxation process. Figures 2~a! and 2~b! show some
graphs of the average relaxation function for static disorder, dynamical disorder with exponential
and self-similar regression for nonintermittent and intermittent fluctuations, respectively. For the
consistency of comparison the parametersv0, a, and t0 fulfill the relationship~6.5! so that for
dynamical disorder the initial frequency of regression is the same in all cases. In Fig. 2 the same
pattern is observed in both cases, that is, the exponential regression leads to incomplete relaxation
and, for relatively low values of the attenuation exponent, 1.a>0, the self-similar attenuation
leads to relaxation functions which are very close to the functions corresponding to the static case.
Significant differences occur only if the attenuation exponenta is bigger than the unity.

The relative insensitivity with respect to the variations of the attenuation exponenta of the
average relaxation function for dynamical disorder with self-similar regression is consistent with

FIG. 5. Average relaxation functions for nonintermittent dynamical fluctuations with exponential attenuation~dashed! and
self-similar attenuation~dash-pointed! in comparison with the static stretched exponential law~full line!. In the logarithmic
coordinates used, the stretched exponential portions of the relaxation functions appear as straight lines:b50.6,v0/V53,
a50.3, andVt050.1.

FIG. 6. Average relaxation functions for intermittent dynamical fluctuations with exponential attenuation~dashed! and
self-similar attenuation~dash-pointed! in comparison with the intermittent static average relaxation function~full line!. In
the logarithmic coordinates used, the power law portions of the relaxation functions appear as straight lines:b50.6,
v0/V53, a50.3,Vt050.1, andH50.5.
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the ubiquity in nature of the stretched exponential. The occurrence of the stretched exponential
relaxation for these types of systems is not limited to small values of the exponenta. From Table
I it follows that for nonintermittent self-similar dynamical fluctuations a stretched exponential
emerges for large times for any values of the exponenta, small or large. In this case the passage
from small to large times corresponds to a crossover from a stretched exponential with character-
istic frequencyV to another stretched exponential with a smaller characteristic frequency
V*5V/~11ab!,V. Figure 3 displays this crossover phenomenon for different values of the
exponenta from very small to very large. For this graph multiple logarithmic coordinates have
been used for which the stretched exponential portions of the average relaxation functions appear
as straight lines. Stretched exponential portions of the average relaxation functions exist both for
small and large times for any values of the exponenta, small or large and all these stretched
exponentials have the same exponentb. We emphasize that, even though all these stretched
exponentials have the same exponentb, they may actually look very different because their
characteristic frequencies may vary very much. This fact is clearly illustrated in Fig. 4.

Figure 5 displays the departure of the different relaxation functions from a stretched expo-
nential in the nonintermittent case. Even for small values of the attenuation rates the exponential
regression leads to a large time saturation behavior which is very different from the one described
by a stretched exponential. In contrast the self-similar regression leads to a behavior close to the
one corresponding to a stretched exponential. Similarly in Fig. 6 the departure from the power law
relaxation is investigated for intermittent fluctuations. In this case, too, even for small regression
rates the exponential regression leads to incomplete relaxation whereas the self-similar attenuation
generates an average relaxation function with a long tail which is close to the one corresponding
to the static intermittent case.

The comparative analysis presented in this section shows that for the approach developed in
Sec. V the dynamical disorder decreases the efficiency of relaxation. For small regression rates the
self-similar attenuation of fluctuations leads to relaxation patterns similar to the ones correspond-
ing to the static processes. For exponential attenuation, however, even the slowest regression rate
leads to a different behavior corresponding to incomplete relaxation. For self-similar nonintermit-
tent dynamical disorder the stretched exponential relaxation behavior emerges for large times even
if the attenuation exponenta is very large; the corresponding stretched exponentials, although
characterized by the same fractal exponentb as in the static case, may be very different from the
static stretched exponential, because their characteristic frequencies may vary very much.

VII. DISCUSSION

In this section we discuss some physical implications of the approach suggested in Sec. V.
The physical interpretation of the method of computing path averages based on Eqs.~5.6!–~5.17!
is related to an apparently obscure mathematical problem, the choice of the initial and boundary
conditions for the evolution equations~5.21! or ~5.36! for the marginal averageF(W,t). In order
to ensure the normalization to unity of the average probability densityw(W)dW of an individual
relaxation rate, for solving the evolution equation~5.28! we have used the boundary condition
~5.31!. This boundary condition expresses the generation of new fluctuations which are then
destroyed by the regression process. In contrast, for solving the partial differential evolution
equations~5.21! or ~5.36! for the marginal averageF(W,t) no such similar boundary conditions
have been used. This omission of a boundary condition is required by the main characteristics of
the type of dynamical disorder investigated in Sec. V. The main assumption of our approach is that
the fluctuations are generated at the beginning of the relaxation process and then they regress as
the relaxation process is going on. We start out by considering an initial fluctuation with statistical
properties described by the probability densitywst(W)dW given by Eq.~5.25!, and then we follow
its regression during the relaxation process. As time increases, due to the regression process, the
channels with high relaxation rates lose their reactivity and their rates become smaller and smaller.
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During the relaxation process the size of a set of channels with high relaxation rates is shrinking;
of the average number̂N* & of channels involved in the process, more and more have low
relaxation rates, resulting in the decrease of efficiency described by the model. No mechanism of
transition of a channel from a state characterized by a small relaxation rate to a state with a high
relaxation rate is supposed to exist fort.0. Such a mechanism acts only at the beginning of the
process, fort50, when the fluctuations are generated and thus we should impose a boundary
condition only for this moment:

F~W5W* ,t50!5b/W* . ~7.1!

Such a condition, however, does not need to be taken explicitly into account in the computation
because it is contained in the initial condition~5.37!.

The above considerations are closely related to the physical interpretation of Eq.~5.28! for the
time evolution of the probability densityw(W)dW. From the physical point of view Eq.~5.28! is
a stochastic Liouville equation which describes the regression of fluctuations only and it would
lead to a probability loss*w(W)dW,1 if the generation of new fluctuations is not taken into
account. The introduction of the boundary condition~5.31! compensates the ‘‘probability loss’’
due to the regression process by an ‘‘influx of probability fluid’’ into the system. In contrast, the
compound stochastic Liouville equation~5.17!, which describes the relaxation process and Eq.
~5.36! derived from it, cannot accomodate a boundary condition of the type~5.31!. This limitation
is due to the Markovian approximation introduced in Sec. V. Within its framework a given feature
of the regression process can be modeled only by assuming that the regression frequencyv(t) is
generally time dependent, resulting in a time-inhomogeneous evolution equation for the overall
relaxation process for which a boundary condition of the type~5.31! cannot be formulated in a
simple way.

We emphasize that this type of pure regression mechanism without generation of new fluc-
tuations fort.0 is the only one which includes the case of the static disorder as a particular case,
corresponding to the situation when the rate of regression is equal to zero. If the fluctuations are
generated fort.0, the system is characterized by dynamical disorder, even if the regression
process is missing. Although, at least in principle, this type of dynamical disorder can also be
described by the dynamical Huber law~3.7! or by its intermittent analog~4.7!, it is different from
the type of dynamical disorder considered in Sec. V. Some preliminary research concerning the
generation of fluctuations fort.0 is presented in Ref. 19; it has been shown that, as expected, this
type of dynamical disorder leads to an increase in the efficiency of relaxation, because it generates
an increase in the number of channels with high relaxation rates. In particular, if the regression
process is missing, this type of dynamical disorder leads to a compressed exponential relaxation
described by the average survival function

^ l ~ t !&;exp~2constt11b!; 1.b.0. ~7.2!

Our analysis has shown that the self-similar regression has the remarkable feature that for
small regression rates it does not affect the shape of the average relaxation function, generating
only small corrections. Moreover, even for very large regression rates, for large times the process
is described by a stretched exponential with the same fractal exponentb as in the static case.
These results, which might provide an explanation for the universality of the stretched exponential
relaxation law, are consistent with the ideas developed by West36,37concerning the insensitivity of
the statistical fractal systems to random perturbations. From the mathematical point of view for the
model developed in Sec. V, this insensitivity is due to the slow decrease of the relaxation rates in
the case of self-similar regression, especially for large times.

At the end of this section we point out an apparent contradiction between the results reported
here and the results presented in Ref. 26. In Ref. 26 an analysis of the passage over a fluctuating
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activation energy barrier has been suggested based on a path average technique similar to the one
used in Sec. V. Although both models assume the existence of a pure regression mechanism for
t.0, the analysis from Ref. 26 shows that the dynamical disorder leads to an increase of the
transparency factor of the barrier which apparently contradicts the results reported here. The
explanation of this apparent paradox is simple. In Ref. 26 the regression of fluctuations leads to a
decrease in the height of the activation energy barrier, that is, to an increase of the speed of
relaxation, whereas for our model the regression of fluctuations leads to small rates.

VIII. CONCLUSIONS

In this paper an attempt has been made to construct dynamical analogs of the stretched
exponential relaxation. The main idea of the suggested approach is to search for the asymptotic
relaxation laws which emerge in the limit of a very large number of relaxation modes. The
mathematical structure of the theory is based on a formal functional generalization of the theory of
random point processes for which to each random point a random function is attached. In the limit
of very large numbers of relaxation modes two universal relaxation laws have been identified
corresponding to nonintermittent and intermittent dynamical fluctuations, respectively. An attempt
to evaluate the path averages entering the asymptotic relaxation laws has been made for Markov-
ian systems with pure regression. It has been shown that the regression of fluctuations leads to a
decrease of the efficiency of the relaxation process. For nonintermittent fluctuations the process is
relatively insensitive to the effect of self-similar attenuation of fluctuations, even for high regres-
sion rates. This effect might provide an explanation for the wide applicability of stretched expo-
nential law for describing various relaxation processes with dynamical disorder.

Further research should focus on the evaluation of the path averages for the more general case
when there is a competition between the generation and the extinction of fluctuations and on the
study of suitable applications. Ideal candidates for the application of the theory are the systems in
which a large number of degrees of freedom are involved in the relaxation process, for instance,
the protein–ligand interactions,7 or the ion channel kinetics,9 where the relaxation modes corre-
spond to a large number of molecular conformations.
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